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A dataset comprising the spatial locations of events or items of interest is called a spatial point
pattern. Such data arise in myriad areas, as diverse as epidemiology, ecology, and archaeology.
Typically, models for the distribution of such data incorporate two fundamental components, one
relating to persistent spatial (fixed) effects and the other reflecting (stochastic) interactions between
points, such as a tendency to cluster together. For example, for a pattern of disease cases the first
component would relate to the variation in underlying population density while the latter could
represent infectious transmission.
 
A fundamental task, with critical practical consequences, is to separate these components in the
analysis of any given pattern. This is notoriously difficult because of a lack of identifiability: in
most current models the two competing representations of spatial variation yield identical
predictions, and therefore cannot be distinguished even with unlimited data. However, leveraging
recent developments on some specific examples, allied to progress in related areas of statistics, we
will develop a new, comprehensive suite of flexible 'hybrid' models incorporating both components
in an identifiable manner, overcoming a decades-long stalemate on progress. This will allow us to
attack important research questions that have previously remained elusive.

1D. SUMMARY
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2A. BACKGROUND
A spatial point pattern is a dataset recording the observed locations of events or items of interest.

Year 1 Year 2
Figure 1: Campylobacter cases in Manawatu.

Figure 1 shows the pattern of human campylobacter infections in
the Manawatu region of New Zealand recorded in two di↵erent
years [55, 38]: spatial maps of disease cases are important for
surveillance of public health risk [41, 31, 44, 23, 73, 38]. In other
examples, the disposition of artefacts in an ancient cemetery could
reflect social strata [67], and the spatial pattern of alarm calls of
capuchins in a jungle may reflect social organisation [22].

Statistical methodology for spatial point patterns can extract this information e�ciently and
rigorously [9, 30, 40, 53]. The observed pattern is treated as the outcome of a random spatial point
process [20]. Statistical methodology for point processes has become a highly active research topic,
leveraging recent advances in statistical theory, algorithms and computing [9, 53, 54].

This project addresses unsolved, fundamental challenges in this methodology, with important
practical consequences. The foremost problem is unidentifiability. An apparent cluster of disease
cases, for example, could be attributable either to a common systemic cause (such as a common
source of infection) or to stochastic dependence between the points (such as contagion between
infected cases) [44, 43, 29, 55]. Distinguishing between these competing explanations is vital for
understanding the disease aetiology and public health risk [31, 39]. Yet, for half a century, this
has been thought to be fundamentally impossible. The standard statistical approach is to formu-
late a maximal model that includes all potential sources of variability, then use formal statistical
procedures to decide which components of the model are needed to explain the data. But, by a
famous result of Bartlett [16], point process models that include both deterministic heterogene-
ity and stochastic dependence may be technically “unidentifiable” or “confounded”, in that the
model parameters cannot be determined from observation. The two competing explanations yield
identical predictions, and therefore cannot be distinguished, even with infinite amounts of data.

In elementary statistics, unidentifiability is a defect of the model used, and can often be avoided
simply by altering the model or the experiment. For spatial point processes, however, it has
proved extremely di�cult to construct models that simultaneously incorporate both deterministic
heterogeneity and stochastic dependence, are identifiable and tractable for statistical inference,
and are realistic descriptions of the data. Progress has been achieved only in specific application
fields, for example in seismology, after decades of research [56, 57].

Faced with this apparent impasse, research on statistical methodology for spatial point patterns
has essentially evolved as two separate streams, one focussed on deterministic trend, and the other
on dependence between points. Recent progress in smoothing techniques, such as kernel and
spline methods (a key research area of PI Davies and AI Hazelton), now permits estimation of the
deterministic trend in a highly flexible and computationally e�cient manner [28, 34, 70, 71, 18,
21, 23, 22, 26], but this work typically assumes independence between points. Progress in spatial
point process modelling and statistical methodology now permits a rich variety of representations
of inter-point dependence (a specialty of AI Baddeley) [19, 6, 52, 53, 14, 9], but typically assumes
the deterministic trend is known or is rigidly parametrised. The fundamental weakness remains
that deterministic trend and stochastic inter-point dependence cannot both be subjected to a high
level of scrutiny in the same analysis. Statistical tools for spatial point patterns are therefore
currently unsatisfactory for many important and relevant research questions.

Recent findings o↵er a glimmer of hope. In time series analysis (where unidentifiability is also a
long-standing problem) researchers have been able to disentangle global trend from autocorrelation
by constraining the model [37, 59, 45, 36]. For spatial point patterns, the task is more complex,
but a similar strategy has been successful in some very specific applications [31, 46, 51, 24]. These
results are limited, but they reveal the potential scope, power and utility of this general approach.

2B. OVERALL AIM OF THE RESEARCH
We aim to develop a new generation of statistical methods for the analysis of spatial point patterns,
that can simultaneously support detailed inference about deterministic and stochastic sources of
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variation. These methods will combine the best modern techniques for modelling deterministic
trend and stochastic dependence, in a ‘hybridised’ statistical modelling framework. The resulting
methods will enable a much more searching analysis of important scientific questions about spatial
point pattern data, for example in spatial epidemiology.

Objective 1: Development of identifiable spatial point process models. A model is
unidentifiable when its statistical properties at all spatial scales can be explained equally well by
deterministic or stochastic e↵ects [16]. This suggests that identifiability could be recovered by
constraining the model so that the deterministic e↵ects operate at (say) a larger scale than the
stochastic e↵ects. This strategy has been used successfully (albeit in very specific fashions) in time
series analysis [37, 59, 45, 36] and in spatial point pattern analysis [31, 46, 51, 24].

Our objective is to develop flexible model classes for spatial point processes in which deter-
ministic and stochastic e↵ects are combined and yet are identifiable. This requires theoretical,
computational and practical developments. Tools for constructing ‘hybrid’ point process models
[15, 31] will ensure that the models are well-defined and tractable. Model assumptions about the
spatial scale of the deterministic and stochastic e↵ects may either be stated explicitly (such as
constraints on the derivative of the point process intensity) or incorporated implicitly (through
the choice of model-fitting criteria such as spatial penalized likelihood [63, 71, 50, 32] and local
composite likelihood [3, 12, 35]) or encoded as prior information in a Bayesian analysis [69, 68].

Objective 2: Implement and assess practical methods of inference. We will develop
a novel library of tools necessary to permit researchers to analyse real-world data. There will be
a strong focus on methods for model fitting. We will investigate the theoretical properties of our
estimators within the new modelling frameworks; for example, examining how the properties of
kernel estimators of intensity are impacted by assumptions on ranges of e↵ect. We will work on
computationally e�cient algorithms to ensure prompt calculation of estimates at a high level of
spatial resolution. Finally, we will investigate diagnostic methods to assess adequacy of model fit,
building on the seminal work of the AIs [14] in spatial statistics.

Objective 3: Extend developments to point patterns on non-standard domains.
There is an increasing literature dealing with points observed on special domains which require
unique treatment. Good examples are given by patterns observed on linear networks [17, 58] or
on the surface of a sphere [33, 42], including recent work involving PI Davies and AI Baddeley
[48, 61]. Little is known about how one should combine deterministic and stochastic e↵ects in
these instances, and how model fitting is a↵ected. In response, we will assess the unique modelling
requirements such data presents, and examine the feasibility of extending the work on the first two
objectives to these situations.

Throughout the project, particularly Objectives 2 and 3, computational implementations will
be necessary to test and appraise the developed methodology. Thus, a goal parallel to our entire
body of work will be to produce corresponding software for general consumption by the research
community, ensuring accessibility of our new, flexible statistical techniques. Ideal vehicles are
already available, by way of AI Baddeley’s prominent R [60] package spatstat [13, 9], as well as
the sparr package by PI Davies and AI Hazelton [25, 27].

2C. PROPOSED RESEARCH
Suppose we observe a point pattern x = {x1, . . . , xn}, taken to be a realisation of the point
process X defined within some spatial domain W ⇢ R2. Our proposed research is centred on
models capable of combining deterministic and stochastic e↵ects to describe the data at hand.

To model “clustering” or positive association one may use a Cox point process model [19, 53] in
which, conditional on the realisation  (x) of an external stochastic process  (x), the point process
X is a Poisson process [9, 30] with intensity function of the form

�X| (x) = ⌫(x) (x), x 2 W, (1)
where ⌫ is a deterministic “trend” function that would be modelled using advanced smoothing
techniques. This modelling scheme has been used in several application-specific examples e.g.
[31, 51]. For identifiability we require E[ (x)] ⌘ 1 so that the marginal intensity of X is �X(x) =
⌫(x). The stochastic component  plays the role of a random e↵ect [9, p. 450], and gives rise to
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positive spatial correlation; it is governed by a vector of correlation parameters ✓. It is technically
challenging to construct new models for  which have desired properties such as a specified spatial
correlation structure. Consequently the model for is usually selected from a menu of formulations
which have been theoretically analysed: reasonable choices for  include log-Gaussian random
fields, shot-noise fields and random mosaic models.

Figure 2 shows a synthetic example in W = [0, 1]2. The left panel was generated from a purely
  λX(x) = ν(x)   λX | Ψ(x) = ν(x) ψ(x)

Figure 2: Artificially generated data used to illustrate a
deterministic intensity (left) and a random intensity

combining deterministic and stochastic e↵ects (right).

deterministic intensity function �X(x) = ⌫(x); this is
contrasted with a dataset generated using the multiplica-
tive construction of (1) using the same deterministic func-
tion ⌫(x). There we see smaller-scale sporadic clustering
in tandem with the overall heterogeneity—in practice,
this would be the nature of the data we observe (cf. Fig-
ure 1). As the volume of data increases we can hope to
obtain an ever more accurate estimate of the marginal in-
tensity �X| (x), but that will generally not provide any

means of separating the relative contributions of ⌫ and  .
Complicated forms of dependence between points can also be described using Gibbs point pro-

cess models [62, 6, 47] which can best be formulated and fitted using their (Papangelou) conditional
intensity �X(u | x), u 2 W . By the Möbius inversion formula, this can be factorised as

�X(u | x) = �(u)G(u | x), u 2 W, (2)

where �(u) is the deterministic trend and G(u | x) contains only interaction terms. This can
be treated analogously to (1) by modelling � using advanced smoothing techniques, while G
can only take certain forms which are known (from previous research) to satisfy the technical
requirements. An important di↵erence is that the trend � and intensity �X are no longer equal,
but are approximately related by a functional equation [7].

Historically it has been important that the terms which induce stochastic dependence,  (x) in
(1) and G(u | x) in (2), cannot be chosen willy-nilly because they must satisfy technical constraints.
They have usually been selected from a short menu of models that have previously been constructed
and checked for validity in the literature. In both cases, products of terms chosen from the menu
are also valid, so that  (x) could be replaced by  1(x) . . . m(x) where  j(x), j = 1, . . . ,m are
processes known to satisfy the technical conditions, and similarly G(u | x) may be validly replaced
by a product of such terms [15]. This increases the scope of modelling considerably.

Application-specific examples in the literature reveal the extraordinary flexibility made possible
by hybrid deterministic-stochastic modelling frameworks such as (1); the intuition behind which
is supported by the real-world context of the data at hand [14, 31, 46, 51]. This in turn shines a
light on the potential for significant advances in spatial point process statistics. The fundamental
challenge, however, is to be able to separately capture and hence reliably model both ⌫(x) and the
properties of the stochastic driving mechanism  (x) given an observed dataset. Work to date on
this di�cult problem has remained ad-hoc and severely limited in a more general sense.

Our proposed research thus seeks to develop a new generation of statistical methods that
circumvent the inherent unidentifiability by placing informed, readily estimable constraints on the
component processes. This will overcome a decades-long stalemate on progress and allow us novel,
highly flexible means to address complex research questions arising in a variety of disciplines.

Objective 1: Development of identifiable spatial point process models. Strategies
for proceeding are best posed by first considering a particular model design, followed by specifica-
tion of the nature of the component processes. For the sake of exposition, let us remain with the
formulation laid out by (1). Diggle et al. [31] used a spatiotemporal version of this design for the
analysis of gastrointestinal infections in a region of the UK. They addressed the issue of identifia-
bility between the deterministic and stochastic elements by e↵ectively making assumptions about
the smoothness of ⌫. In more detail, they estimated ⌫ by (spatially adaptive) kernel smoothing
with a subjectively chosen global bandwidth h, and then accounted for the residual variation in
the intensity using a log-Gaussian Cox process [52] as the stochastic driving mechanism  . In this
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sense,  arises as a realisation of  where

 (x; ✓) = exp{Y (x; ✓)}; x 2 W ⇢ R2, (3)

where Y is taken to be a stationary, isotropic Gaussian random field with parameter ✓ = {µ, �2,�}
in which we define a mean µ, variance �2, and correlation scale parameter �. With the kernel
estimate of the deterministic trend treated as known, the parameters necessary for (3) were subse-
quently estimated using minimum contrast methods [53, 30]. An approach of this sort is pragmatic
and can be e↵ective, but it raises some theoretical di�culties. If the bandwidth follows the usual
asymptotic regimen for consistency of the kernel estimator, then we may expect ⌫̂ ! �X| as
n ! 1 [70], technically obviating the need for  . On the other hand, if we place some lower
bound on the bandwidth h, then ⌫̂ will not be a consistent estimator in general.

As part of our proposed work we will pursue the idea that stochastic variation may be dis-
tinguished from deterministic trend by consideration of scale. One approach is to operate under
formal assumptions on the curvature of ⌫. We anticipate this will lead to theoretical identifiability
for some classes of stochastic models  , if suitable constraints are placed on the range of spatial
correlation. Equivalently we may look at contributions of ⌫ and  in the frequency domain, ex-
plaining the high frequency variations through the stochastic element. The idea is rather general,
and could for instance be used to resolve the identifiability problem studied by Bartlett [16].

There is some precedent in the literature for the above strategy. In kernel density estimation,
guidelines to optimal bandwidth selection can be linked to the estimated smoothness of the target
function via its second derivative [64, 66]. An adaptation of such an approach in the presence of
spatial dependence, by studying these properties of a kernel estimate of ⌫, is one avenue of pursuit.

Moving away from kernel smoothing, note that model identifiability will also typically be as-
sured if the deterministic trend is specified parametrically. In principle this means we can represent
that term using some kind of bivariate spline with a fixed number of knots [71]. We will address
two questions that naturally arise. First, what can be said about identifiability under an asymp-
totic regimen in which the number of knots increases with the n, but at a (much) slower rate?
Second, how much flexibility can we hope to achieve in practice from a spline estimate of trend
while permitting reasonable estimates of model parameters?

A di↵erent approach is to circumvent problems of identifiability through use of local likelihood
methods, recently pioneered by AI Baddeley [3]. This involves creation of a pastiche of local models
built up from a pre-specified “template” model which itself does not exhibit spatial inhomogeneity.
Each localised model is fitted using likelihood functions weighted to the data in the neighbourhood
of the estimation point in question. Issues of scale therefore remain, and are bound up with
calibration of the instrumental kernel weights. We will seek to further develop this approach.

Objective 2: Implement and assess practical methods of inference. The work under
this objective follows naturally from theoretical developments under the first objective. In essence,
we seek to ensure that theoretical knowledge is e↵ectively translated to practical methodologies
for model fitting and diagnosis.

If identifiability is enabled through placing restrictions on the curvature of ⌫, then a natural
approach is to estimate this component of the intensity through a kernel estimate with a corre-
sponding kind of constraint. However, we face theoretical challenges because the curvature of the
kernel estimate ⌫̂ will be an amalgam of the true curvature of ⌫ with additional high frequency
‘wiggles’ corresponding to noise in the dataset at hand. It follows that applying a theoretical bound
on the curvature of ⌫ to the estimator ⌫̂ will not necessarily guarantee consistent estimation. Some
insight into this problem exists for univariate smoothing [65]; extending these results to the bi-
variate setting will permit design of a consistent kernel estimator of ⌫ under curvature constraints.
We will then seek to develop data-driven bandwidth selectors for use in this constrained setting.
Finally, we will also explore the extension of these results from fixed bandwidth kernel estimation
to spatially adaptive estimation (e.g. based on the methods of [1]); shown to be well-suited to
point pattern data [23, 22]. In principle the utilisation of these constrained kernel estimators will
allow us to estimate consistently the parameters ✓ of the residual stochastic process  . We will
conduct numerical experiments to assess the practicability of this approach for single instances of
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point patterns (see relevant commentary on the di�culties faced in general e.g. [49]).
Turning to spline methods, we note that while knot selection (including both the number and

position of knots) is often relatively unimportant for univariate splines, this choice is likely to be
far more important in the 2D setting [63, 71]. The curse of dimensionality means that a dense grid
of knots locations will not be practicable, and even with smaller numbers of knots, optimal choice
between knot arrangements will be challenging. We will examine these issues in the presence of
various driver processes  , taking account of estimation accuracy and computational expense.

Local likelihood methods have the powerful advantage that they are easily deployed in appli-
cations: they do not require the construction and theoretical analysis of bespoke models. Existing
theory, methodology and computational techniques relevant to the template model require only
minor modification. The main disadvantage is that the final result is not fully specified in the fa-
miliar sense of a “fitted model” [3]. Appropriate bandwidth selection for the kernel weights requires
attention, and we will seek to further develop such methods in line with theoretical advancements.

Diagnostic methods are important for the assessment of any statistical model. In the setting
of spatial point processes, the work of the AIs [14, 4, 10] was seminal. However, for the hybrid
models at hand we will need to develop new tools, including analogues of residuals, leverage and
influence, that are capable of indicating the extent to which deterministic and stochastic elements
of the model are uniquely determined by the data at hand.

Objective 3: Extend developments to point patterns on non-standard domains.
Spatial point patterns are most commonly assumed to arise in continuous 2D space. How-
ever, emerging research is highlighting the substantial challenges that arise when the pattern
arises on another domain, such as the surface of a sphere [33, 42] or a linear network [17, 58].
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Figure 3: Street crimes observed in an area of Chicago (left)
and corresponding nonparametric intensity estimate (right;

line thickness proportional to intensity) using state-of-the-art
methodology.

The left panel of Figure 3 shows the spatial pattern of
street crimes reported in an urban area of Chicago, USA
[2]. Here the crime locations are constrained to lie on
the street network. Similar examples include road tra�c
accidents [61] and microscopic features on the dendrite
network of a neuron [5].

The major challenge here is that the network is not
homogeneous, so there are no non-trivial homogeneous
random processes on a network, and most of the standard recipes for model-building are not
successful [8]. A linear network is the simplest example of a “substrate” on which the data are
constrained to lie. This constraint a↵ects the entire approach to data analysis and completely
invalidates many classical techniques which assume homogeneity. Even the simple task of non-
parametric estimation of intensity is challenging on a linear network. Existing methods for 2D
point patterns cannot be transferred directly to a network; attempting to do so has led to falla-
cious results [72] which were subsequently pointed out [48]. In recent work involving PI Davies
and AI Baddeley [48, 61] it is demonstrated that a 2D kernel intensity estimate of the points,
renormalised by a convolution of the 2D kernel with arc-length measure on the network, leads to
a statistically consistent estimator of intensity on the network. On the right of Figure 3 is such an
estimate for the Chicago data.

Research on relevant statistical methods is still in its infancy for such problems, and no general
parametric modelling solutions presently exist, much less any hybridised deterministic-stochastic
frameworks. However, the concept of combining the two sources of variation in modelling such a
pattern remains sound with similar scale-specific intuition. In the Chicago crimes example the fixed
heterogeneity in the population in that urban area could be explained via a deterministic trend,
with the stochastic component used to capture any more sporadic, localised crime tendencies.

In our final task of the proposed research we aim to make a substantial contribution to this
emerging area of study. We will use hybridisation and localisation strategies to construct point
process models on a linear network which are amenable to analysis while being su�ciently flexible
to model real data. The modelling and estimation tools developed in Objectives 1 and 2 will be
enlisted and tested in this challenging context.

Proposal
Standard

Contact PI 's Surname
Davies

Initials
TM

Application Number
19-UOO-191

Panel
MIS

2019 Marsden Fund Proposals - Full Round Page 6



2E. REFERENCES
[1] Abramson IS (1982) On bandwidth variation in kernel estimates—a square root law, Annals

of Statistics 10 1217-1223.
[2] Ang QW,Baddeley A, Nair G (2012) Geometrically corrected second-order analysis of events

on a linear network, with applications to ecology and criminology, Scandinavian Journal of

Statistics 39 591-617.
[3] Baddeley A (2017) Local composite likelihood for spatial point processes, Spatial Statistics

22 261-295.
[4] Baddeley A, Chang Y-M, Song Y, Turner R (2012) Residual diagnostics for covariate e↵ects

in spatial point process models. Journal of Computational and Graphical Statistics 22 886-905.
[5] Baddeley A, Jammalamadaka A, Nair G (2014) Multitype point process analysis of spines

on the dendrite network of a neuron, Applied Statistics 63 673-694.
[6] Baddeley A, Møller J (1989) Nearest-neighbour Markov point processes and random sets,

International Statistical Review 2 89-121.
[7] Baddeley A, Nair G (2012) Fast approximation of the intensity of Gibbs point processes.

Electronic Journal of Statistics 6, 1155-1169.
[8] Baddeley A, Nair G, Rakshit S, McSwiggan G (2017) “Stationary” point processes are

uncommon on linear networks. STAT 6, 68-78.
[9] Baddeley A, Rubak E, Turner R (2015) Spatial Point Patterns: Methodology and Applica-

tions With R, Chapman and Hall/CRC Press, UK.
[10] Baddeley A, Rubak E, Turner R (2018) Leverage and influence diagnostics for Gibbs spatial

point processes. Spatial Statistics 29, 15-48.
[11] Baddeley A, Møller J, Waagepetersen R (2000) Non- and semi-parametric estimation of

interaction in inhomogeneous point patterns, Statistica Neerlandica 54 329-350.
[12] Baddeley A, Turner R (2000) Practical maximum pseudolikelihood for spatial point patterns

(with discussion), Australian and New Zealand Journal of Statistics 42 283-322.
[13] Baddeley A, Turner R (2005) spatstat: an R package for analyzing spatial point patterns,

Journal of Statistical Software 12 1–42.
[14] Baddeley A, Turner R, Møller J, Hazelton ML (2005) Residual analysis for spatial point

processes (with discussion), Journal of the Royal Statistical Society Series B 67 617-666.
[15] Baddeley A, Turner R, Mateu J, Bevan A (2013) Hybrids of Gibbs point process models

and their implementation, Journal of Statistical Software 55, 11, 1–43.
[16] Bartlett MS (1964) The spectral analysis of two-dimensional point processes, Biometrika 51

299–311.
[17] Borruso G (2008) Network density estimation: A GIS approach for analysing point patterns

in a network space, Transactions in GIS 12 377-402.
[18] Botev Z, Grotowski J, Kroese D (2010) Kernel density estimation via di↵usion, Annals of

Statistics 38 2916-2957.
[19] Cox DR (1955) Some statistical models related with series of events, Journal of the Royal

Statistical Society Series B 17 129-164.
[20] Daley DJ and Vere-Jones D (2003) An Introduction to the Theory of Point Processes, Volume

I: Elementary Theory and Methods (2nd. Ed.), Springer, USA.
[21] Davies TM (2013) Jointly optimal bandwidth selection for the planar kernel-smoothed

density-ratio, Spatial and Spatio-temporal Epidemiology 5 51-65.
[22] Davies TM, Baddeley A (2018) Fast computation of spatially adaptive kernel estimates,

Statistics and Computing 28 937-956.
[23] Davies TM, Hazelton ML (2010) Adaptive kernel estimation of spatial relative risk, Statis-

tics in Medicine 29 2423-2437.
[24] Davies TM, Hazelton ML (2013) Assessing minimum contrast parameter estimation for

spatial and spatiotemporal log-Gaussian Cox processes, Statistica Neerlandica 67 355-389.
[25] Davies TM, Hazelton ML, Marshall JC (2011) sparr: Analyzing spatial relative risk using

fixed and adaptive kernel density estimation in R, Journal of Statistical Software 39 1-14.
[26] Davies TM, Lawson AB (2019) An evaluation of likelihood-based bandwidth selectors for

Proposal
Standard

Contact PI 's Surname
Davies

Initials
TM

Application Number
19-UOO-191

Panel
MIS

2019 Marsden Fund Proposals - Full Round Page 7



spatial and spatiotemporal kernel estimates, Journal of Statistical Computation and Simula-

tion 89 1131-1152.
[27] Davies TM, Marshall JC, Hazelton ML (2018) Tutorial on kernel estimation of continuous

spatial and spatiotemporal relative risk, Statistics in Medicine 37 1191-1221.
[28] Diggle PJ (1985) A kernel method for smoothing point process data, Applied Statistics 34

138-147.
[29] Diggle PJ (1990) A point process modelling approach to raised incidence of a rare phenomenon

in the vicinity of a prespecified point, Journal of the Royal Statistical Society Series A 153
349-362.

[30] Diggle PJ (2014) Statistical Analysis of Spatial and Spatiotemporal Point Patterns, 3rd ed,
Chapman and Hall/CRC Press, USA.

[31] Diggle PJ, Rowlingson B, Su TL (2005) Point process methodology for on-line spatio-temporal
disease surveillance, Environmetrics 16 423-434.

[32] Fahrmeir L, Kneib T (2011) Bayesian smoothing and regression for longitudinal, spatial and

event history data, Oxford University Press, UK.
[33] Fisher N, Lewis T, Embleton B (1993) Statistical Analysis of Spherical Data, Cambridge

University Press, Cambridge, UK.
[34] Green PJ, Silverman BW (1993) Nonparametric regression and generalized linear models: a

roughness penalty approach, CRC Press, USA.
[35] Guan Y, Jalilian A, Waagepetersen R (2015) Quasi-likelihood for spatial point processes,

Journal of the Royal Statistical Society Series B 77 677–697.
[36] Guerrero VM, Cortés Toto D, Reyes Cervantes HJ (2018) E↵ect of autocorrelation when

estimating the trend of a time series via penalized least squares with controlled smoothness,
Statistical Methods and Applications 27 109-130.

[37] Hart JD (1991) Kernel regression estimation with time series errors, Journal of the Royal

Statistical Society Series B 53 173-187.
[38] Hazelton ML (2017) Testing for changes in spatial relative risk, Statistics in Medicine 36

2735-2749.
[39] Hocking B, Gordon IR, Grain HL, Hatfield GE (1996) Cancer incidence and mortality and

proximity to TV towers, Medical Journal of Australia 165 601-605.
[40] Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical Analysis and Modelling of Spatial

Point Patterns, Wiley, UK.
[41] Kelsall JE, Diggle PJ (1995) Non-parametric estimation of spatial variation in relative risk,

Statistics in Medicine 14, 2335-2342.
[42] Lawrence T, Baddeley A, Milne RK, Nair G (2016), Point pattern analysis on a region of a

sphere, Stat 5 144-157.
[43] Lawson AB (2018) Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology

(3rd. Ed.), Chapman and Hall, USA.
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2F. TIMETABLE

Number of Years (maximum of 3): 3
Year 1: 2020

• Investigation of spatial identifiability for models of point process data.
– Derive general properties of models under specific constraints on deterministic and

stochastic components.

– Conduct ‘proof-of-concept’ empirical tests/simulations for the di↵erent formulations
investigated above to assess ‘practical identifiability’ i.e. what we might hope to learn
from individual datasets.

• Develop formal model designs for the most promising identifiable frameworks.
• PI Davies and AI Hazelton visited by AI Baddeley at the University of Otago. Plan and draft
2 manuscripts dealing with the di↵erent aspects of the theory and and practical consequences
of constraining individual model components. Recruit PhD student.

Year 2: 2021

• A concentration on practical methods of model fitting and inference for newly developed
hybrid spatial point process models.

– Develop data-driven ways to secure constraints on the deterministic and stochastic
components as required.

– Develop estimation methods for deterministic components in the presence of spatial
dependence and vice-versa.

– Empirically investigate estimation techniques.
• Develop diagnostic tools for newly developed models, to assess their fit to data. Assess
estimation methods, plots, and ease of interpretation.

• Further visit between the three named members of the research team (venue TBD). Plan and
draft 2-3 manuscripts on practical fitting methods, diagnostic investigation, and applications.
Recruit 2-year postdoctoral fellow.

Year 3: 2022

• Development of hybridised modelling techniques for point patterns on linear networks.
– Define stochastic processes on networks; assess properties.

– Building on recent work for smoothing network data, design possible modelling frame-
works for linear network data combining deterministic and stochastic e↵ects.

– Test models using empirical and real-world data.
• Consider potential for similar models for alternative domains, such as point patterns observed
on the surface of a sphere.

• Further visit between the three named members of the research team (venue TBD). Plan
1-2 manuscripts with particular focus on modelling point pattern data observed on linear
networks.

In tandem with the above, we will implement methodological advancements in the open-source
software package R, extending the functionality of existing R libraries developed by the research
team. We recognise, and are particularly motivated by, the need for accessibility of cutting-edge
statistical methods for inference to the wider research community. We expect this to serve as an
excellent avenue for the drafting of additional ‘tutorial-style’ manuscripts and software vignettes
for applied researchers and other users, thereby raising the profile of New Zealand’s expertise in
these areas. Furthermore, progress will be reported on regularly at both local and international
statistics conferences.

2G. ROLES AND RESOURCES
The proposed programme of research seeks to bridge the critical gap that currently exists between
flexible smoothing methods for estimation of fixed components of trend on the one hand, and
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stochastic models to describe point-to-point interaction on the other. This is perfectly reflected
in the composition of the research team, which brings together two of Australasia’s top statistical
researchers in spatial point processes (AI Baddeley) and kernel smoothing (AI Hazelton), along
with a 2-year postdoctoral fellow and a 3-year Ph.D. student, under the leadership of emerging
research heavyweight PI Davies. This trans-Tasman group has the experience and dynamism to
conduct world leading research, firmly positioning New Zealand at the frontier of spatial statistics.

PI Davies has established himself as one of New Zealand’s leading young statisticians,
with over two dozen papers in high-impact statistics and applications journals (e.g. Stat. Med.,
Ann. Appl. Stat., Stat. Comp.) and two early career research awards. He has expertise in both
spatial statistics and smoothing methods, including methodological development, computational
implementation and application. With 0.25 FTE, he will lead the project, contribute to all
areas of research, and be the primary supervisor of the postdoctoral and doctoral researchers. His
unifying role will serve to strengthen the intersection of knowledge shared by the two experienced
AIs.

AI Baddeley is a Distinguished Professor and recognised international researcher in the field
of spatial point process statistics, with scores of publications in top statistics journals (e.g. Ann.
Stat., JRSS B) and numerous scientific prizes and a�liations. Building on this vast expertise,
AI Baddeley will contribute in particular to theoretical developments related to estimation of
interaction e↵ects and associated software development, with a proposed 0.1 FTE. Of note is his
lead authorship of the spatstat software, which provides a superb dissemination vehicle for novel
developments of the project: The accompanying 2005 paper by Baddeley and Turner (ref. [13] in
Section 2E) has now been cited well over 1,000 times.

AI Hazelton is a prolific international researcher in kernel density estimation and related
smoothing problems. He has considerable knowledge of spatial statistics and associated applica-
tions in spatial and spatio-temporal epidemiology. With a string of publications in leading statistics
journals (e.g. JRSS B, Ann. Appl. Stat.), he has received the premier research prize of the New
Zealand Statistical Association. Contributing 0.05 FTE, AI Hazelton will focus in particular on
methodological developments related to flexible nonparameteric trend estimation in the presence
of complex models for inter-point interaction.

Collaboration between the PI and AIs will be further strengthened through the ‘glue’ pro-
vided by the postdoctoral fellow and doctoral student, each at 1.0 FTE. Their specific roles
will depend in part on their own strengths and interests. Suitable candidates would have strong
theoretical and computational abilities, and an interest in spatial applications. While based pre-
dominately with PI Davies at the University of Otago, both will also take opportunities to spend
significant amounts of time in Western Australia working with Distinguished Professor Baddeley
and his research team. Their active support of the named investigators will lend particular strength
to the growth of New Zealand’s capacity for research into cutting-edge point process methodology.

The PI and AIs have a record of highly successful collaboration. Each pair has already
published together in leading journals on various aspects of spatial statistics—Davies and Badde-
ley (Stat. Comp., Int. Stat. Rev.); Davies and Hazelton (Stat. Med., Comput. Stat. Data Anal.);
Baddeley and Hazelton (JRSS B, discussion paper)—though never as a group of three. Coming
together on this project therefore represents both a natural progression to their individual work
and an opportunity to forge an outstanding new tripartite research collaboration.

The physical resources of the proposed research project are minimal, aside from the requested
FTEs. The only other major requested resource will be funding for travel. At their respective
institutions the investigators possess su�cient computational resources for the planned pursuits.
Digital video conversations over the Internet will be scheduled regularly.

2H. ETHICAL OR REGULATORY OBLIGATIONS
N/A
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5. CURRICULUM VITAE AND PUBLICATIONS

PART 1
1a. Personal details
Full name Title First name Second name(s) Family name

Dr Tilman Marcus Davies
Present position Senior Lecturer in Statistics
Organisation/Employer University of Otago
Contact address Department of Mathematics & Statistics

PO Box 56
Dunedin, New Zealand Post code 9054

Work telephone 03-479 7772 Mobile 021-165 2690
Email tdavies@maths.otago.ac.nz
Personal website http://www.stats.otago.ac.nz/?people=tilman davies

1b. Academic qualifications

2012: PhD Statistics; Massey University.
2007: Bachelor of Science Honours (BScHons) in Statistics (First class); Massey University.
2006: Bachelor of Computer and Mathematical Sciences (BCM) in Applied Statistics/German;
University of Western Australia.

1c. Professional positions held

2018-present: Adjunct Research Fellow, Dept. of Mathematics and Statistics, Curtin Uni-
versity, Australia.
2017-present: Senior Lecturer in Statistics, University of Otago.
2012-2016: Lecturer in Statistics, University of Otago.
2009-2011: Graduate Assistant and Doctoral Student, Massey University.
2008: Statistician, The EMMES Corporation (Rockville MD, USA).

1d. Present research/professional speciality

• Analysis of planar point patterns and spatial statistics
• Kernel smoothing and density-ratios
• Computational statistics, R programming
• Biostatistical applications in geographical epidemiology and physiology

1e. Total years research experience: 10 years (incl. PhD)

1f. Professional distinctions and memberships (including honours, prizes, schol-
arships, boards or governance roles, etc)

Grants/Funding
2015: Awarded Marsden Fast-start Grant 15-UOO-092: ‘Smoothing and inference for point
process data with applications to epidemiology’ as PI.
2014: University of Otago Research Grant (UORG): “Spatial Methods for Intensity Estima-
tion and their Performance in Epidemiology” as PI.
Awards/Scholarships
2017: University of Otago Early Career Award for Distinction in Research.
2014: Worsley Early Career Research Award (NZ Statistical Association).
2009: Top Achiever’s Doctoral Scholarship (Bright Future Scheme; TEC, NZ).
Postgraduate/Honours Supervision
2019: Morshadur Rahman, PhD (primary supervisor; expected start date: October).
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2019-present: Anna Redmond, Honours (primary supervisor).
2018-present: Megan Drysdale, Masters (co-supervisor).
2018-present: Marilette Lötter, Honours (primary supervisor).
2017-2018: Qing Ruan, Postgraduate Diploma (primary supervisor).
2016-2018: Baylee Smith, Masters (co-supervisor).
2015: Patrick Brown, Postgraduate Diploma (primary supervisor).
2014: Baylee Smith, Honours (primary supervisor).
2013: Claire Flynn, Honours (primary supervisor).
Conference/Workshop Attendance
2018: Australian Statistical Conference, Melbourne (ISCB/ASC 2018). Contributed talk.
2017: Conference Board of Mathematical Statistics 2017 Regional Workshop: Bayesian
Modeling for Spatial and Spatio-Temporal Data (CBMS 2017), Santa Cruz CA, USA.
2016: Royal Statistical Society Conference (RSS 2016), Manchester, UK. Poster.
2016: Institute of Mathematical Statistics Asia-Pacific Rim Meeting (IMS/APRM 2016), Chi-
nese University of Hong Kong, Hong Kong. Invited speaker.
2015: Otago International Health Research Network Conference (OIHRN 2015), Dunedin,
NZ. Contributed talk.
2015: Joint Statistical Meetings (JSM 2015), Seattle WA, USA. Contributed talk.
2012-2016, 2018: Annual New Zealand Statistical Association Conference (NZSA/ORSNZ),
main university centers around NZ. Contributed talks and poster presentations.
2012: Australian and New Zealand Association of Clinical Anatomisits Conference (ANZACA
2012), Sydney, Australia.
Invited Collaboration and Seminars
2018: Invited research visitor, Dept. of Biostatistics, UCLA, USA.
2016-2018: Invited research visitor, Dept. of Mathematics and Statistics, Curtin University,
Perth, Australia.
2016, 2017: Invited research collaborator, Centre for Health Informatics Computing and
Statistics (CHICAS), Lancaster University, UK.
2011-2018: Local departmental statistics seminars, Dept. of Mathematics and Statistics,
University of Otago, Dunedin, NZ.
2011: Invited research visitor, Dept. of Mathematical Sciences, Aalborg University, Denmark.
2011: Invited seminar, Dept. of Mathematics and Statistics, Lancaster University, UK.
2011: Invited seminar, Dept. of Mathematics and Statistics, University of Jyväskylä, Finland.
Memberships
2016-present: Accredited Statistician (AStat)—Statistical Society of Australia Inc. (SSAI).
2012-present: Overseas member—Statistical Society of Australia Inc. (SSAI).
2009-present: Regular member—New Zealand Statistical Association (NZSA).
Professional/Outreach Roles
2019: Chair, New Zealand Statistical Association Conference (NZSA2019).
2018: Co-presenter with A. Baddeley and R. Turner for the ARC Centre for Excellence in
Mathematics and Statistics 3-day workshop on spatial statistics, University of Melbourne.
2014-present: Director of Studies (100-level statistics: Dept. of Mathematics & Statistics,
Otago).
2013-present: Sole author/presenter of the annual 3-day University of Otago “Introduction
to R” programming workshop (SWoPS 1: Statistics Workshops for Postgraduates and Staff).
2013-present: Schools Liaison Officer, Dept. of Mathematics & Statistics, Otago.

1g. Total number of peer

reviewed publications
and patents

Journal
articles

Books Book chap-
ters, books
edited

Conference
proceedings

Patents

25 1 0 1 0
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PART 2
2a. Research publications and dissemination
Peer reviewed journal articles

1. Davies TM, Lawson AB (2019) An evaluation of likelihood-based bandwidth selec-
tors for spatial and spatiotemporal kernel estimates, Journal of Statistical Compu-

tation and Simulation 89(7) 1131-1152.

2. Davies TM, Schofield MR, Cornwall J, Sheard PW (2019) Modelling multilevel spa-
tial behaviour in binary-mark muscle fibre configurations, Annals of Applied Statis-

tics [to appear] (doi: To be assigned).

3. Rakshit S, Davies TM, Moradi MM, McSwiggan G, Nair G, Mateu J, Baddeley
A (2019) Fast kernel smoothing of point patterns on a large network using 2D
convolution, International Statistical Review [to appear] (doi: 10.1111/insr.12327).

4. Davies TM, Baddeley A (2018) Fast computation of spatially adaptive kernel esti-
mates, Statistics and Computing 28(4) 937-956.

5. Davies TM, Flynn CR, Hazelton ML (2018) On the utility of asymptotic bandwidth
selectors for spatially adaptive kernel density estimation, Statistics & Probability

Letters 138 75-81.

6. Davies TM, Marshall JC, Hazelton ML (2018) Tutorial on kernel estimation of con-
tinuous spatial and spatiotemporal relative risk, Statistics in Medicine 37(7) 1191-
1221.

7. Davies TM, Jones K, Hazelton ML (2016) Symmetric adaptive smoothing regimens
for estimation of the spatial relative risk function, Computational Statistics & Data

Analysis 101 12-28.

8. Davies TM, Sheard PW, Cornwall J (2016) Letter to the Editor: Comment on
Makino et al. and observations on spatial modeling, Anatomical Science Inter-

national 91(4) 423-424.

9. Farrell S, Davies TM, Cornwall J (2015) Use of clinical anatomy resources by
musculoskeletal outpatient physiotherapists in Australian public hospitals: A cross-
sectional study, Physiotherapy Canada 67(3) 273-279.

10. Fletcher JGR, Stringer MD, Briggs CA, Davies TM, Woodley SJ (2015) CT mor-
phometry of adult thoracic intervertebral discs, European Spine Journal 24(10)
2321-2329.

11. Smith BA, Davies TM, Higham CFW (2015) Spatial and social variables in the
Bronze Age phase 4 cemetery of Ban Non Wat, Northeast Thailand, Journal of

Archaeological Science: Reports 4(34) 362-370.

12. Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2015) Bayesian inference
and data augmentation schemes for spatial, spatiotemporal and multivariate log-
Gaussian Cox processes in R, Journal of Statistical Software 63(7) 1-48.

13. Cornwall J, Davies TM, Lees D (2013) Student injuries in the dissecting room,
Anatomical Sciences Education 6(6) 404-409.

14. Davies TM (2013) Jointly optimal bandwidth selection for the planar kernel-
smoothed density-ratio, Spatial and Spatio-temporal Epidemiology 5(1) 51-65.
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15. Davies TM (2013) Scaling oversmoothing factors for kernel estimation of spatial
relative risk, Epidemiological Methods 2(1) 67-83.

16. Davies TM, Bryant DJ (2013) On circulant embedding for Gaussian random fields
in R, Journal of Statistical Software 55(9) 1-21.

17. Davies TM, Cornwall J, Sheard PW (2013) Modelling dichotomously marked mus-
cle fibre configurations, Statistics in Medicine 32(24) 4240-4258.

18. Davies TM, Hazelton ML (2013) Assessing minimum contrast parameter estima-
tion for spatial and spatiotemporal log-Gaussian Cox processes, Statistica Neer-

landica 67(4) 355-389.

19. Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2013) lgcp - An R package for
inference with spatial and spatiotemporal log-Gaussian Cox processes, Journal of

Statistical Software 52(4) 1-40.

20. Zhang ZJ, Davies TM, Gao J, Wang Z, Jiang QW (2013) Identification of high-
risk regions for schistosomiasis in the Guichi region of China: an adaptive kernel
density estimation-based approach, Parasitology 140(7) 868-875.

21. Zhang ZJ, Chen DM, Chen Y, Davies TM, Vaillancourt JP, Liu WB (2012) Risk sig-
nals of an influenza pandemic caused by highly pathogenic avian influenza subtype
H5N1: Spatio-temporal perspectives, Veterinary Journal 192(3) 417-421.

22. Davies TM, Hazelton ML, Marshall JC (2011) sparr: Analyzing spatial relative
risk using fixed and adaptive kernel density estimation in R, Journal of Statistical

Software 39(1) 1-14.

23. Sanson RL, Harvey N, Garner MG, Stevenson MA, Davies TM, Hazelton ML,
O’Connor J, Dubé C, Forde-Folle KN, Owen K (2011) Foot-and-mouth disease
model verification and ‘relative validation’ through a formal model comparison, OIE

Scientific and Technical Review 30(2) 527-540.

24. Davies TM, Hazelton ML (2010) Adaptive kernel estimation of spatial relative risk,
Statistics in Medicine 29(23) 2423-2437.

25. Hazelton ML, Davies TM (2009) Inference based on kernel estimates of the relative
risk function in geographical epidemiology, Biometrical Journal 51(1) 98-109.

Peer reviewed books

• Davies TM (2016) The Book of R: A First Course in Programming and Statistics,
No Starch Press, San Francisco, USA; 832pp.

Refereed conference proceedings

• Davies TM, Sheard PW, Cornwall J (2013) Development of a novel statistical
method to test spatial distributions of skeletal muscle fiber types, In proceedings

of the 2012 Meeting of the Australian and New Zealand Association of Clinical

Anatomists (ANZACA); Clinical Anatomy 26, 641-660.

Proposal
Standard

Contact PI 's Surname
Davies

Initials
TM

Application Number
19-UOO-191

Panel
MIS

2019 Marsden Fund Proposals - Full Round Page 16



5. CURRICULUM VITAE AND PUBLICATIONS

PART 1
1a. Personal details
Full name Title First name Second name(s) Family name

Prof. Martin Luke Hazelton
Present position Professor of Statistics
Organisation/Employer Massey University
Contact address Tennent Drive

Private Bag 11222
Palmerston North Post code 4442

Work telephone 06-356 9099 Mobile 021-863 438
Email m.hazelton@massey.ac.nz
Personal website
(if applicable)

http://www.massey.ac.nz/emhazelto/

1b. Academic qualifications
1993, D.Phil in Statistics, University of Oxford
1989, BA Hons in Mathematics (First Class), University of Oxford

1c. Professional positions held
From September 2019, Professor of Statistics, University of Otago
2017-Sept. 2019, Head of the Institute/School of Fundamental Sciences, Massey University
2006-Sept. 2019, Chair of Statistics, Massey University
1997-2006, Lecturer–Associate Professor in Statistics, University of Western Australia
1994-1997, Lecturer in Statistical Science, University College London
1993-1994, Research Officer in Transport Studies, University of Oxford
1992-1993, Stipendiary Lecturer in Mathematics, Jesus College, University of Oxford

1d. Present research/professional speciality
Network tomography
Kernel smoothing
Spatial statistics
Statistical modelling and inference for transport networks
Biostatistics and statistical methods in epidemiology

1e. Total years research experience: 28 years

1f. Professional distinctions and memberships (including honours, prizes, schol-
arships, boards or governance roles, etc)

2017, Awarded Marsden grant 17-MAU-037, ‘Lattice polytope samplers: theory, methods
and applications’, as sole PI
2016, Invited speaker at 4th IMS-APRM conference, The Chinese University of Hong Kong
2015, AI on Marsden grant 15-UOO-092, ‘Smoothing and inference for point process data
with applications to epidemiology’
2014, Awarded Littlejohn Research Award, the premier research award of the New Zealand
Statistical Association
2014, Awarded Marsden grant 14-MAU-017, ‘Modelling, inference and prediction for dy-
namic traffic networks’, as sole PI
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2014-2016, president of the New Zealand Statistical Association
2014, Invited International Lecturer, Croucher Foundation Advanced Study Institute, Hong
Kong University of Science and Technology
2013, Keynote speaker at 2013 New Zealand Statistical Association/ Operations Research
Society of New Zealand conference, Hamilton
2013, Invited speaker at HKUST Workshop on Day-to-Day Dynamical System Approach for
Modeling Transportation Systems, Hong Kong
2013-2016, Associate Investigator on Australian Research Council Discovery Grant ‘Statis-
tical methodology for events on a network, with application to road safety’
2013-present, Associate Editor, Transportmetrica B: Transport Dynamics
2012-present, Principal Investigator in the Infectious Disease Research Centre (www.idrec.ac.nz)
2011-present, Theory and Methods Editor, Australian and New Zealand Journal of Statistics
2011, plenary speaker at Statistical Concepts and Methods for the Modern World Confer-
ence, Colombo, Sri Lanka
2011, External academic on Graduating Year Review panel for Bachelor of Mathematical
Sciences at Auckland University of Technology
2010-2014, Awards Committee Convenor, New Zealand Statistical Association
2010-2011, Associate Editor, Australian and New Zealand Journal of Statistics
2009, invited speaker at DADDY: Workshop on Day-to-day Dynamics for Transportation Net-
works, Salerno, Italy
2008-2016, Associate Editor, Journal of the Korean Statistical Association
2008-2011, Awarded Marsden grant MAU0807, ‘New tools for statistical inference for network-
based transportation models’, as sole PI
2007-present, member of the Editorial Advisory Board, Transportation Research Part B
2007, Grant assessor for Hong Kong City University
2006, Invited speaker at joint Australian/New Zealand Statistics Conference, Auckland
2006-present, Member of the New Zealand Statistical Association
2006, Grant assessor for the Israel Science Foundation
2005-2008, Grant assessor for Australian National Health & Medical Research Council
2005, Author of read paper at Royal Statistical Society Research Meeting, See [28] in publi-
cation list.
2003-present, paper on plug-in bandwidth matrices for density estimation is most highly cited
ever in Journal of Nonparametric Statistics (Web of Science). See [39] in publication list
2002, Invited speaker at 16th Australian Statistics Conference, Canberra, Australia
2002-2004, President, West Australian Branch of the Statistical Society of Australia
1998, Author of read paper at Royal Statistical Society General Meeting. See [48] in publi-
cation list.
1997-present, Supervised 13 PhD students, 9 as primary supervisor. Of the 10 to have
completed to date, 7 secured academic posts
1987-1989, Exhibitioner in mathematics, St Anne’s College, University of Oxford

1g. Total number of peer
reviewed publications
and patents

Journal
articles

Books Book chap-
ters, books
edited

Conference
proceedings

Patents

82 0 9 5 0
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PART 2
2a. Research publications and dissemination
Peer reviewed journal articles (selected)

1. Liao, S. J., Marshall, J., Hazelton, M. L., & French, N. P. (2019). Extending statisti-
cal models for source attribution of zoonotic diseases: a study of campylobacterio-
sis. Journal of the Royal Society Interface, 16(150), 20180534.

2. Davies, T.M., Marshall, J.C. and Hazelton, M.L. (2018). Tutorial on kernel esti-
mation of continuous spatial and spatiotemporal relative risk with accompanying
instruction in R. Statistics in Medicine, 37, 1191-1221.

3. Davies, T.M., Flynn, C. and Hazelton, M.L. (2018). On the utility of asymptotic
bandwidth selectors for spatially adaptive kernel density estimation. Statistics and
Probability Letters, 138, 75-81.

4. Watling, D.P. and Hazelton, M.L. (2018). Asymptotic approximations of transient
behaviour for day-to-day traffic models. Transportation Research Part B, 118, 90-
105.

5. Hazelton, M.L. (2017). Testing for changes in spatial relative risk. Statistics in
Medicine, 36, 2735-2749.

6. Hazelton, M.L. and Bilton, T.P. (2017). Polytope samplers for network tomography.
Australian and New Zealand Journal of Statistics, 59(4), 495-511.

7. Hazelton, M.L. and Cox, M.P. (2016). Bandwidth selection for kernel log-density
estimation. Computational Statistics and Data Analysis, 103, 56-67.

8. Hazelton, M.L. and Parry, K. (2016). Statistical methods for comparison of day-to-
day traffic models. Transportation Research Part B, 92(A), 22-34.

9. Davies, T.M., Jones, K. and Hazelton, M.L. (2016). Symmetric adaptive smoothing
regimens for estimation of the spatial relative risk function. Computational Statistics
and Data Analysis, 101, 12-18.

10. Pirikahu, S., Jones. G., Hazelton, M.L. and Heuer, C. (2016). Bayesian methods
of confidence interval construction for the population attributable risk from cross-
sectional studies. Statistics in Medicine, 35 3117-3130.

11. Hazelton, M.L. (2015). Network tomography for integer-valued traffic. Annals of
Applied Statistics, 9(1), 474-506.

12. Fernando, W.T.P.S, Ganesalingam, S. and Hazelton, M.L. (2014). A comparison
of estimators of the geographical relative risk function. Journal of Statistical Com-
putation and Simulation, 84(7), 1471-1485.

13. Davies, T.M and Hazelton, M.L. (2013). Assessing minimum contrast parameter
estimation for spatial and spatiotemporal log-Gaussian Cox processes. Statistica
Neerlandica, 67(4), 355-389.

14. Parry, K. and Hazelton, M.L. (2013). Bayesian inference for day-to-day dynamic
traffic models. Transportation Research Part B, 50, 104-115.

15. Parry, K. and Hazelton, M.L. (2012). Estimation of origin-destination matrices from
link counts and sporadic routing data. Transportation Research Part B, 46, 175-
188.

16. Hazelton, M.L. and Turlach, B.A. (2011). Semiparametric regression with shape
constrained penalized splines. Computational Statistics and Data Analysis, 55,
2871-2879.
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17. Davies, T.M., Hazelton, M.L. and Marshall, J.C. (2011). sparr: Analyzing spatial
relative risk using fixed and adaptive kernel density estimation in R. Journal of
Statistical Software, 39, 1-14.

18. Hazelton, M.L. (2011). Assessing log-concavity of multivariate densities. Statistics
and Probability Letters, 81, 121-125.

19. Davies, T.M. and Hazelton, M.L. (2010). Adaptive kernel estimation of spatial
relative risk. Statistics in Medicine, 29, 2423-2437.

20. Hazelton, M.L. (2010). Bayesian inference for network-based modes with a linear
inverse structure. Transportation Research Part B, 44, 674-685.

21. Hazelton, M.L. (2010). Statistical inference for transit system origin-destination
matrices. Technometrics, 52, 221-230.

22. Marshall, J.C. and Hazelton, M.L. (2010). Boundary kernels for adaptive density
estimators on regions with irregular boundaries. Journal of Multivariate Analysis
101, 949-963.

23. Hazelton, M.L. and Turlach, B.A. (2010). Semiparametric density deconvolution.
Scandinavian Journal of Statistics 37, 91-108.

24. Hazelton, M.L. and Turlach, B.A. (2009). Nonparametric density deconvolution by
weighted kernel estimators. Statistics and Computing, 19, 217-228.

25. Hazelton, M.L. and Marshall, J.C. (2009). Linear boundary kernels for bivariate
density estimation. Statistics and Probability Letters, 79, 999-1003.

26. Hazelton, M.L. and Davies, T.M. (2009). Inference based on kernel estimates of
the relative risk function in geographical epidemiology. Biometrical Journal, 51,
98-109.

27. Hazelton, M.L. (2008). Statistical inference for time varying origin-destination ma-
trices. Transportation Research Part B, 42, 442–452.

28. Hazelton, M.L. (2007). Bias reduction in kernel binary regression. Computational
Statistics and Data Analysis, 51, 4393-4402.

29. Hazelton, M.L. and Turlach, B.A. (2007). Reweighted kernel density estimation.
Computational Statistics and Data Analysis, 51, 3057-3069.

30. Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for
spatial point processes (with discussion). Journal of the Royal Statistical Society
Series B, 67, 617-666. Read before the Royal Statistical Society on Wednesday
22nd June 2005.

31. Duong, T and Hazelton, M.L. (2005). Cross-validation bandwidth matrices for
multivariate kernel density estimation. Scandinavian Journal of Statistics, 32, 485-
506.

32. Duong, T. and Hazelton, M.L. (2005). Convergence rates for unconstrained band-
width matrix selectors in multivariate kernel density estimation. Journal of Multi-
variate Analysis, 93, 417-433.

33. Gurrin, L.C., Scurrah, K. and Hazelton, M.L. (2005). Tutorial in biostatistics: Spline
smoothing with linear mixed models. Statistics in Medicine, 24, 3361-3381.

34. Hazelton, M.L. and Watling, D.P. (2004). Computation of equilibrium distributions
of Markov traffic assignment models. Transportation Science, 38, 331-342.
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35. Hazelton, M.L. (2004). Density estimation from aggregate data. Computational
Statistics, 19, 407-423.

36. Sircombe, K.N. and Hazelton, M.L. (2004). Comparison of detrital zircon age
distributions by kernel functional estimation. Sedimentary Geology, 171, 91-111

37. Hazelton, M.L. (2004). Density estimation from aggregate data. Computational
Statistics, 19, 407-423.

38. Hazelton, M.L. (2003). A graphical tool for assessing normality. The American
Statistician, 57, 285-288.

39. Hazelton, M.L. (2003). Variable kernel density estimation. Australian and New
Zealand Journal of Statistics, 45, 271-284.

40. Duong, T and Hazelton, M.L. (2003). Plug-in bandwidth selectors for bivariate
kernel density estimation. Journal of Nonparametric Statistics, 15, 17-30.

41. Hazelton, M.L. (2003). Some comments on origin-destination matrix estimation.
Transportation Research Part A, 37, 811-822.

42. Hazelton, M.L. (2003). Total travel cost in stochastic assignment models. Net-
works and Spatial Economics, 3, 457-466.

43. Hazelton, M.L. (2002). Day-to-day variation in Markovian traffic assignment mod-
els. Transportation Research Part B, 36, 637-648.

44. Hazelton, M.L. (2001). Estimation of origin-destination trip rates in Leicester. Jour-
nal of the Royal Statistical Society, Series C (Applied Statistics), 50, 423-433.

45. Hazelton, M.L. (2001). Inference for origin-destination matrices: estimation, re-
construction and prediction. Transportation Research Part B, 35, 667-676.

46. Hazelton, M.L. (2000). Marginal density estimation from incomplete bivariate data.
Statistics and Probability Letters, 47, 75-84.

47. Hazelton, M.L. (2000). Estimation of origin-destination matrices from link flows on
uncongested networks. Transportation Research Part B, 34, 549-566.

48. Broughton, J., Hazelton, M.L. and Stone, M. (1999). Influence of light-level on
the incidence of road casualties and the associated effect of summertime clock
changes. Journal of the Royal Statistical Society, Series A, 162, 137-175. Read
before the Royal Statistical Society on 14 October 1998.

49. Hazelton, M.L. (1998). Bias annihilating bandwidths for kernel density estimation
at a point. Statistics and Probability Letters, 38, 305-309.

50. Hazelton, M.L. (1998). Some remarks on Stochastic User Equilibrium. Trans-
portation Research Part B, 32, 101-108.

51. Hazelton, M.L. (1996). Bandwidth selection for local density estimators. Scandi-
navian Journal of Statistics, 23, 221-232.

52. Hazelton, M.L. (1996). Optimal rates for local bandwidth selection. Journal of
Nonparametric Statistics, 7, 57-66.

53. Hazelton, M.L. (1995). Improved Monte Carlo inference for models with additive
error. Statistics and Computing, 5, 343-350.
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5. CURRICULUM VITAE AND PUBLICATIONS

PART 1
1a. Personal details
Full name Title First name Second name(s) Family name

Professor Adrian John Baddeley
Present position Professor of Computational Statistics
Organisation/Employer Curtin University
Contact address School of Mathematics & Statistics

GPO Box U1987
Perth, Western Australia Post code 6845

Work telephone +61 410 447 821 Mobile +61 410 447 821
Email Adrian.Baddeley@curtin.edu.au
Personal website
(if applicable)

www.spatstat.org

1b. Academic qualifications

1980, PhD, Mathematical Statistics, Cambridge University
1976, BA(Hons), Pure Mathematics and Statistics, Australian National University.

1c. Professional positions held

2015–present, Professor of Computational Statistics, Curtin University.
2013–2014, Research Professor, Centre for Exploration Targeting, University of Western
Australia.
2010–2012, Research Scientist, CSIRO Mathematics Informatics & Statistics, Perth, Aus-
tralia.
1994-2010, Full Professor of Statistics, University of Western Australia.
1988–1994, Research group leader, CWI (Centre for Mathematics and Computer Science),
Amsterdam, Netherlands.
1985-1988, Research scientist, CSIRO Division of Mathematics & Statistics, Sydney, Aus-
tralia.
1982–1985, Lecturer in Statistics, University of Bath, UK.
1979–1982, Research Fellow of Trinity College, Cambridge, UK.

1d. Present research/professional speciality

Statistical methodology for spatial data. Statistical computing and statistical software.

1e. Total years research experience: 42 years

1f. Professional distinctions and memberships (including honours, prizes, schol-
arships, boards or governance roles, etc)

2017, John Curtin Distinguished Professorship, Curtin University.
2015, Honorary DSc, Aalborg University.
2013, Australian Research Council, Discovery Outstanding Researcher Award
2008, Matheron Lecturer, International Association for Mathematical Geology.
2004, Pitman Medal, Statistical Society of Australia.
2001, Centenary Medal, Australian Government.
2001, Hannan Medal, Australian Academy of Science.
2000, elected Fellow of the Australian Academy of Science.
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1995, Medal of the Australian Mathematical Society.
1991, Adjunct Professor, University of Leiden, Netherlands.
1979, Prize Research Fellowship, Trinity College Cambridge.
1979, Smith-Knight Prize (1st Class), University of Cambridge.
1977, External Research Studentship, Trinity College Cambridge.
1977, Commonwealth Postgraduate Research Scholarship.
1976, University Medal, Australian National University.

1g. Total number of peer
reviewed publications
and patents

Journal
articles

Books Book chap-
ters, books
edited

Conference
proceedings

Patents

87 2 11 18 0
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PART 2
2a. Research publications and dissemination
Peer reviewed journal articles (selected)

1. S. Rakshit, T.M. Davies, M.M. Moradi, G. McSwiggan, G. Nair, J. Mateu, and
A. Baddeley. Fast kernel smoothing of point patterns on a large network us-
ing 2D convolution. International Statistical Review, 2019. In press. DOI:

10.1111/insr.12327.
2. S. Rakshit, A. Baddeley, and G. Nair. Efficient code for second-order analysis of

events on a linear network. Journal of Statistical Software, 2019. In press.
3. K. Hingee, A. Baddeley, P. Caccetta and G. Nair. Computation of lacunarity from

covariance of spatial binary maps. Journal of Agricultural, Biological and Environ-
mental Statistics 24: 264-288. 2019.

4. M. Moradi, O. Cronie, E. Rubak, R. Lachieze-Rey, J. Mateu and A. Baddeley.
Resample-smoothing of Voronoi intensity estimators. Statistics and Computing
2019, In press. Published online 22 january 2019.

5. A. Baddeley, E. Rubak and R. Turner. Leverage and influence diagnostics for
Gibbs spatial point processes. Spatial Statistics 29: 15–48, 2019.

6. T.M. Davies and A. Baddeley. Fast computation of spatially adaptive kernel esti-
mates. Statistics and Computing 28: 937-956, 2018.

7. A. Baddeley. Local composite likelihood for spatial point processes. Spatial Statis-
tics, 22:261–295, 2017.

8. A. Baddeley, A. Hardegen, T. Lawrence, R.K. Milne, G. Nair, and S. Rakshit. On
two-stage Monte Carlo tests of composite hypotheses. Computational Statistics
and Data Analysis, 114:75–87, 2017.

9. A. Baddeley and G. Nair. Poisson-saddlepoint approximation for Gibbs point pro-
cesses with infinite-order interaction: in memory of Peter Hall. Journal of Applied
Probability, 54(4):1008–1026, December 2017.

10. S. Rakshit, G. Nair, and A. Baddeley. Second-order analysis of point patterns on
a network using any distance metric. Spatial Statistics, 22(1):129–154, 2017.

11. A. Baddeley, G. Nair, S. Rakshit, and G. McSwiggan. ‘Stationary’ point processes
are uncommon on linear networks. STAT, 6(1):68–78, 2017.

12. A. Baddeley, R. Turner, and E. Rubak. Adjusted composite likelihood ratio test for
spatial Gibbs point processes. Journal of Statistical Computation and Simulation,
86(5):922–941, 2016.

13. T. Lawrence, A. Baddeley, R.K. Milne, and G. Nair. Point pattern analysis on a
region of a sphere. Stat, 5(1):144–157, 2016.

14. G. McSwiggan, A. Baddeley, and G. Nair. Kernel density estimation on a linear
network. Scandinavian Journal of Statistics, 44(2):324–345, 2016.

15. I.W. Renner, J. Elith, A. Baddeley, W. Fithian, T. Hastie, S.J. Phillips, G. Popovic,
and D.I. Warton. Point process models for presence-only analysis. Methods in
Ecology and Evolution, 6(4):366–379, 2015.

16. A. Baddeley, J.-F. Coeurjolly, E. Rubak, and R. Waagepetersen. Logistic regres-
sion for spatial Gibbs point processes. Biometrika, 101(2):377–392, 2014.

17. A. Baddeley, P.J. Diggle, A. Hardegen, T. Lawrence, R.K. Milne, and G. Nair. On
tests of spatial pattern based on simulation envelopes. Ecological Monographs,
84(3):477–489, 2014.

18. A. Baddeley, A. Jammalamadaka, and G. Nair. Multitype point process analysis
of spines on the dendrite network of a neuron. Applied Statistics (Journal of the
Royal Statistical Society, Series C), 63(5):673–694, 2014.
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19. A. Baddeley and R. Turner. Bias correction for parameter estimates of spatial point
process models. Journal of Statistical Computation and Simulation, 84:1621–1643,
2014.

20. R.S. Anderssen, A. Baddeley, F.R. DeHoog, and G.M. Nair. Solution of an integral
equation arising in spatial point process theory. Journal of Integral Equations and
Applications, 26(4):437–453, 2014.

21. A. Baddeley, Y.-M. Chang, Y. Song, and R. Turner. Residual diagnostics for covari-
ate effects in spatial point process models. Journal of Computational and Graphical
Statistics, 22:886–905, 2013.

22. A. Baddeley, Y.M. Chang, and Y. Song. Leverage and influence diagnostics for
spatial point processes. Scandinavian Journal of Statistics, 40:86–104, 2013.

23. A. Baddeley and D. Dereudre. Variational estimators for the parameters of Gibbs
point process models. Bernoulli, 19:905–930, 2013.

24. A. Baddeley, R. Turner, J. Mateu, and A. Bevan. Hybrids of Gibbs point pro-
cess models and their implementation. Journal of Statistical Software, 55(11):1–
43, 2013.

25. A. Baddeley, Y.M. Chang, Y. Song, and R. Turner. Nonparametric estimation of
the dependence of a spatial point process on a spatial covariate. Statistics and its
Interface, 5:221–236, 2012.

26. Q.W. Ang, A. Baddeley, and G. Nair. Geometrically corrected second order anal-
ysis of events on a linear network, with applications to ecology and criminology.
Scandinavian Journal of Statistics, 39:591–617, 2012.

27. A. Baddeley and G. Nair. Fast approximation of the intensity of Gibbs point pro-
cesses. Electronic Journal of Statistics, 6:1155–1169, 2012.

28. A. Baddeley and G. Nair. Approximating the moments of a spatial point process.
Stat, 1(1):18–30, 2012.

29. A. Baddeley, E. Rubak, and J. Møller. Score, pseudo-score and residual diagnos-
tics for spatial point process models. Statistical Science, 26:613–646, 2011.

30. A. Baddeley, M. Berman, N.I. Fisher, A. Hardegen, R.K. Milne, D. Schuhmacher,
and R. Turner. Spatial logistic regression and change-of-support for Poisson point
processes. Electronic Journal of Statistics, 4:1151–1201, 2010.

31. S.S. Singh, B. Vo, A. Baddeley, and S. Zuyev. Filters for spatial point processes.
SIAM Journal on Control and Optimization, 48(4):2275–2295, 2009.

32. A. Baddeley, J. Møller, and A.G. Pakes. Properties of residuals for spatial point
processes. Annals of the Institute of Statistical Mathematics, 60:627–649, 2008.

33. J.F. Wallace, M. Canci, X. Wu, and A. Baddeley. Monitoring native vegetation on
an urban groundwater supply mound using airborne digital imagery. Journal of
Spatial Science, 53:63–73, 2008. ISSN 1449-8596.

34. A. Baddeley, R. Turner, J. Møller, and M. Hazelton. Residual analysis for spatial
point processes (with discussion). Journal of the Royal Statistical Society, Series
B, 67(5):617–666, 2005.

35. R. Foxall and A. Baddeley. Nonparametric measures of association between
a spatial point process and a random set, with geological applications. Applied
Statistics, 51(2):165–182, 2002.

36. A. Baddeley, J. Møller, and R. Waagepetersen. Non- and semiparametric es-
timation of interaction in inhomogeneous point patterns. Statistica Neerlandica,
54(3):329–350, 2000.
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37. A. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial point
patterns (with discussion). Australian and New Zealand Journal of Statistics,
42(3):283–322, 2000.

38. Y.C. Chin and A.J. Baddeley. Markov interacting component processes. Advances
in Applied Probability, 32:597–619, 2000.

39. K. Schladitz and A.J. Baddeley. A third order point process characteristic. Scan-
dinavian Journal of Statistics, 27:657–671, 2000.

40. Y.C. Chin and A.J. Baddeley. On connected component Markov point processes.
Advances in Applied Probability, 31:279–282, 1999.

41. W.S. Kendall, M.N.M. van Lieshout, and A.J. Baddeley. Quermass-interaction pro-
cesses: conditions for stability. Advances in Applied Probability, 31:315–342, 1999.

42. M.N.M. van Lieshout and A.J. Baddeley. Indices of dependence between types in
multivariate point patterns. Scandinavian Journal of Statistics, 26:511–532, 1999.

43. A.J. Baddeley and R.D. Gill. Kaplan-Meier estimators of interpoint distance distri-
butions for spatial point processes. Annals of Statistics, 25:263–292, 1997.

44. A.J. Baddeley, M.N.M. van Lieshout, and J. Møller. Markov properties of cluster
processes. Advances in Applied Probability, 28:346–355, 1996.

45. A.J. Baddeley and M.N.M. van Lieshout. Area-interaction point processes. Annals
of the Institute of Statistical Mathematics, 47:601–619, 1995.

46. M.N.M. van Lieshout and A.J. Baddeley. A nonparametric measure of spatial in-
teraction in point patterns. Statistica Neerlandica, 50:344–361, 1996.

47. A.J. Baddeley, R.A. Moyeed, C.V. Howard, and A. Boyde. Analysis of a three-
dimensional point pattern with replication. Applied Statistics, 42(4):641–668, 1993.

48. R.A. Moyeed and A.J. Baddeley. Stochastic approximation of the MLE for a spatial
point pattern. Scandinavian Journal of Statistics, 18:39–50, 1991.

49. A.J. Baddeley and J. Møller. Nearest-neighbour Markov point processes and ran-
dom sets. International Statistical Review, 57:89–121, 1989.

50. A.J. Baddeley and B.W. Silverman. A cautionary example on the use of second-
order methods for analyzing point patterns. Biometrics, 40:1089–1094, 1984.

Peer reviewed books
1. A. Baddeley, E. Rubak, and R. Turner. Spatial Point Patterns: Methodology and

Applications with R. Chapman and Hall/CRC, London, 2015.
2. A. Baddeley and E.B. Vedel Jensen. Stereology for Statisticians. Chapman and

Hall/CRC, London, 2005.
Peer reviewed book chapters, books edited (selected)

1. A. Baddeley. Modelling strategies. In A.E. Gelfand, P.J. Diggle, M. Fuentes, and
P. Guttorp, editors, Handbook of Spatial Statistics, chapter 20, pages 339–369.
CRC Press, Boca Raton, 2010.

2. A. Baddeley. Multivariate and marked point processes. In A.E. Gelfand, P.J. Dig-
gle, M. Fuentes, and P. Guttorp, editors, Handbook of Spatial Statistics, chapter 21,
pages 371–402. CRC Press, Boca Raton, 2010.

3. A. Baddeley. Spatial point processes and their applications. In A. Baddeley,
I. Bárány, R. Schneider, and W. Weil, editors, Stochastic Geometry: Lectures
given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 13–
18, 2004, Lecture Notes in Mathematics 1892 (subseries: Fondazione C.I.M.E.,
Firenze), pages 1–75. Springer-Verlag, 2006.

4. M.N.M. van Lieshout and A.J. Baddeley. Extrapolating and interpolating spatial
patterns. In A.B. Lawson and D.G.T. Denison, editors, Spatial cluster modelling,
chapter 4, pages 61–86. Chapman and Hall/CRC Press, Boca Raton, 2002.
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