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Statistical Inverse Problems
In the age of automated data collection

Interest is in a process that is observed only indirectly
Observations provide incomplete information about target variable

▶ Aggregated data
▶ Summarised data
▶ Corrupted data

Leads to statistical inverse problems
Problems of this sort are ubiquitous in science and engineering
Often arise from automated data collection
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Linear Inverse Problems for Count Data

For count data, statistical linear inverse problems characterised by

y = Ax (1)
▶ x ∈ Zr

≥0 is count vector of interest;
▶ y ∈ Zn

≥0 is vector of observed counts.
▶ Configuration matrix A is n× r and non-negative integer elements

(often binary).

Typically r > n so linear system (1) will be (heavily)
underdetermined.
Aim is to perform inference for x and/or parameter vector θ
describing underlying distribution f (x |θ).

▶ Often prior information or auxiliary data used to regularize problem.
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Network Tomography
x vector path traffic volumes; θ = E[x ].
y traffic counts collected at various network locations.
Inference for x and/or θ is a standard engineering practice:

▶ Applications to road traffic and electronic communication systems.

Example

1

2

3

1 2

3

Assume travel possible between any of
r = 6 node pairs by direct paths.
Traffic counts y = (y1, y2, y3)

T observed
on n = 3 links.
Collect path volumes in vector x .

y = Ax where A =

 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 .
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Network Tomography with Double Counting
Non-binary configuration matrix

Vehicle counts often collected through inductive loop detectors.
Moving metal in magnetic field generates current...
... but e.g. stop-start motion can result in double counting.

Example

1 2 31 2

3

Nodes 1 and 2 are origins, 2 and
3 are destinations.
Vehicles on link 3 may be double
counted.
Traffic counts y = (y1, y2, y3)

T.

y = Ax where A =

 1 1 0 0 0
0 1 1 0 0
0 0 0 1 2
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Resampling Contingency Tables

x cell entries in table.
y marginal totals (or similar).
Resampling entries x conditional on y can be used to perform
exact inference, creating confidentialized cross-tabulations of
official statistics, etc.

Example (2× 3 table)

y3 y4 y5
y1 x1 x2 x3
y2 x4 x5 x6

⇒


y1
y2
y3
y4
y5


︸ ︷︷ ︸

y

=


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


︸ ︷︷ ︸

A



x1
x2
x3
x4
x5
x6


︸ ︷︷ ︸

x

Delete redundant row.
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Other Applications

Capture-recapture studies in ecology.
Multi-list matching problems in public health.
Biosecurity surveillance.
Inference for haplotype frequency.
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The Conditional Distribution of x

Inference for x based on conditional distribution f (x |y).
▶ Dependence of f on parameter θ suppressed for notational

convenience.

Courtesy of fundamental equation y = Ax ,

f (x |y) = f (x)f (y |x)
f (y)

=
f (x)I{y=Ax}

f (y)

Normalizing constant is f (y) =
∑

x∈FA,y
f (x).

Here FA,y = {x : y = Ax} ∩ Zr
≥0.

This is solution set is called the y-fibre.
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Z-Polytopes

Continuous version of y-fibre is {x : y = Ax ,x ≥ 0}.
This is intersection of linear manifold {x : y = Ax} with
non-negative orthant {x ≥ 0}.
Hence {x : y = Ax ,x ≥ 0} is a convex polytope.
Follows that fibre FA,y = {x : y = Ax} ∩ Zr

≥0 is a Z-polytope.
Assuming A of full rank, then FA,y is an r − n dimensional object
embedded in r -dimensional space.
Have flexibility in representation.
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Different Projections of a Polytope
Circuit network example: r = 5 and r − n = 2

1

2

3

1 2

3

Like earlier example, but last route deleted.

Configuration matrix A =

[
1 1 0 1 0
1 0 1 0 1
0 1 1 0 0

]
Traffic counts y = (4,4,4)T observed.
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Inference

Likelihood is L(θ) = f (y |θ) =
∑

x∈FA,y
f (x |θ)

Hence direct resampling of x and likelihood-based inference for θ
both require knowledge of FA,y ...
... but fibres usually far too large to enumerate.
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MCMC Based Inference

Problem 1: Resampling x for fixed θ.
▶ Applications: contingency table resampling, stochastic EM

algorithm
Problem 2: Posterior inference for θ.

▶ Sampling f (θ|x) typically straightforward by Gibbs,
Metropolis-Hastings algorithms.

▶ Iterate sampling from f (x |y ,θ) with sampling from f (θ|x).
▶ Sampling f (x |y ,θ) is challenging step.
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Random Walk Z-Polytope Samplers
Hit and Run Algorithm

Want to sample f (x |y) (parameter dependence suppressed)
Recall that support of f (x |y) is Z-polytope FA,y .
Will adopt random walk Metropolis-Hastings sampler.

input
Current state x

generate candidate x†

Draw z from set S = {z1, . . . , zM} of possible moves
Draw step size b ∈ Z
Define candidate x† = x + bz ∼ q(·|x)
return x†

accept/reject
Compute α = 1FA,y (x

†)min
{

1, f (x†|θ)q(x |x†)
f (x |θ)q(x†|x)

}
Update x ← x† with probability α

return x
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All the Right Moves

Focus for now on move directions; set move length b = 1.

Random walk sampler draws moves from set S = {z1, . . . , zM}.

If a move z is to have any chance of acceptance, require:
1 Ax† = A(x + z) = y
⇒ Az = 0.

▶ That is, z ∈ kerZ(A) = ker(A) ∩ Zr .
2 x + z ≥ 0.

▶ Inequality interpreted elementwise (here and henceforth)
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Lattice Bases

A set S = {u1, . . . ,uM} is lattice basis if every z ∈ kerZ(A) can be
written as a unique integer combination of the basis vectors.

Example
The columns of

U =


1 −1
−1 1

1 −1
0 2
0 −1


form a lattice basis for FA,y in the double counting network tomography
problem whenever y > 0.
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Application to Circuit Network Example

0 1 2 3 4

0
1

2
3

4

x3

x
5

Lattice basis comprises
moves in coordinate
directions.
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Application to Circuit Network Example

0 1 2 3 4

0
1

2
3

4

x3

x
5

Lattice basis comprises
moves in coordinate
directions.
Random walk cannot
visit all points.
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Connectedness

Irreducibility of random walk required for convergence to target
posterior.
This requires that all elements of FA,y are accessible.
In other words, the MCMC sampler must be connected.
Connectedness can be very difficult to check in practice.
As we saw, lattice bases generally do not guarantee
connectedness.
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Markov Bases and Sub-Bases

A set of movesMFA,y = {z1, . . . , zL} is a Markov sub-basis if it
guarantees existence of walk between any pair of points on FA,y .
A set of movesMA is a Markov basis if it guarantees existence
of walk between any pair of points on any fibre (i.e. for all y ≥ 0).
Computing Markov bases can be very difficult.
Most successful approach uses algebraic statistics (Diaconis
and Sturmfels, 1998).

▶ But computationally prohibitive in even moderately large
applications.

Diaconis, P., & Sturmfels, B. (1998). Algebraic algorithms for sampling from condi-
tional distributions. The Annals of Statistics, 26(1), 363–397.
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Mixing Properties Problems with Markov Bases

Samplers using full Markov bases often mix very poorly.
Full Markov bases can be huge.

▶ For given y , Markov basis typically contains many useless moves.
▶ May wait a long time to select essential move.

Stanley, C., & Windisch, T. (2018) prove arbitrarily slow
convergence to uniform target f (x | y) in large problems.

Stanley, C., & Windisch, T. (2018). Heat-bath random walks with Markov bases. Advances
in Applied Mathematics, 92, 122-143.
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Mixing with Markov Sub-Bases

Markov sub-basis typically much smaller than full Markov basis.
If moves in a given Markov sub-basis are poorly aligned to
polytope geometry, then mixing still slow.
But Markov sub-bases are not unique...
... and mixing can be rapid for well chosen basis.
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Example: Contingency Table Resampling
Bad Geometry

y = (10,10,1,9)T

1 9 10
10 x1 x2 x3
10 x4 x5 x6

A Markov sub-basis is

MFA,y = {(1,−1,0,−1,1,0)T,

(1,0,−1,−1,0,1)T} 0 2 4 6 8 10

0
2

4
6

8
10

x5

x 6
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Mixing arbitrarily slow for y = (M,M,1,M − 1)T for large M.
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Example: Contingency Table Resampling
Good Geometry

y = (10,10,1,9)T

1 9 10
10 x1 x2 x3
10 x4 x5 x6

A Markov sub-basis is

MFA,y = {(0,1,−1,0,−1,1)T,

(1,0,−1,−1,0,1)T} 0 2 4 6 8 10

0
2

4
6

8
10

x5

x 6
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Augmenting Markov Sub-Bases

MFA,y is an augmenting Markov sub-basis if any two points on
FA,y are connected by walk utilizing each move at most once.
If |MFA,y | = dim(kerZ(A)), then sampler mixes rapidly for uniform
target f (x | y). (Stanley, C., & Windisch, T., 2018)

▶ Technically, consider sequence of sampling problems with counts
my , m = 1,2, . . .

Stanley, C., & Windisch, T. (2018). Heat-bath random walks with Markov bases. Advances
in Applied Mathematics, 92, 122-143.
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Example: Contingency Table Resampling
Déjà vu

y = (10,10,1,9)T

1 9 10
10 x1 x2 x3
10 x4 x5 x6

A Markov sub-basis is

MFA,y = {(0,1,−1,0,−1,1)T,

(1,0,−1,−1,0,1)T} 0 2 4 6 8 10

0
2

4
6

8
10

x5

x 6

MFA,y is an augmenting Markov basis
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Finding Small Augmenting Markov Sub-Bases
Not easy!

In principle the Graver basis for A generates an augmenting
Markov sub-basis for any y ≥ 0.

▶ Graver basis arises in integer programming problems
▶ Larger than full Markov basis

For rapid mixing, we need a Markov sub-basis that is:
▶ augmenting;
▶ small.

Lattice bases are small...
... and are sometimes (augmenting?) Markov bases (but when?)
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Lattice Bases as Augmenting Markov Sub-Bases
Theory

H et al. (2024), H & Karimi (2024) found checkable conditions for
lattice basis U to be an augmenting Markov basis.
Uses dominating matrices

▶ M is a c-mixed matrix if every column contains both positive and
negative entries.

▶ A matrix M is dominating if it does not contain a square c-mixed
matrix.

Theorem: Columns of U form a Markov basis if and only if U is
dominating.
Corollary: every lattice Markov basis is augmenting, and hence
gives rise to rapid mixing for uniform fibre sampling.

Hazelton, M.L., McVeagh, M.R., Tuffley, C. and van Brunt, B. (2024). Bernoulli, 30(4),
2676–2699.

Hazelton, M.L., & Karimi, M. (2024). Statistics and Probability Letters, 209, 110106.
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Lattice Bases as Augmenting Markov Sub-Bases
Example

For double counting network tomography problem, consider lattice
bases:

U1 =


1 −1
−1 1

1 −1
0 2
0 −1

 U2 =


1 0
−1 0

1 0
0 2
0 −1


Columns of U1 do not form a Markov basis.

▶ U1 contains a square mixed matrix.
▶ No path from x = (0,0,0,2,0)T to x ′ = (0,0,0,0,1)T on fibre FA,y

with y = (0,0,2)T.

Columns of U2 form an augmenting Markov basis.

Joint NZMS/AustMS/AMS Meeting 27 / 30



Scalable Fibre Samplers
Research Directions

Approximate samplers using lattice bases.
▶ Theory and methods.

Mixing properties for Poisson models?
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To Learn More ...

Journal Articles
Hazelton, M.L., McVeagh, M.R., and van Brunt, B. (2021).
Geometrically aware dynamic Markov Bases for statistical linear
inverse problems. Biometrika, 108(3), 609-626.

Hazelton, M.L., McVeagh, M.R., Tuffley, C. and van Brunt, B. (2024).
Some rapidly mixing hit-and-run samplers for latent counts in linear
inverse problems. Bernoulli, 30(4), 2676–2699.

Hazelton, M.L., and Karimi, M. (2024). When lattice bases are Markov
bases. Statistics and Probability Letters, 209, 110106.

R Package LinInvCount
github.com/MartinLHazelton/LinInvCount
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