Confounding, pseudoreplication, & split-plot designs in
multi-factor global ocean change experiments
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Many confounded and split-plot designs are analysed as if they were
factorial designs.

This isn’t always wrong

(which we can use to our advantage).
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Can be logistically difficult or impossible to implement.

One or more factors controlled by unreplicated equipment,
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e.g. refrigerators, water baths. =
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Large-scale and small-scale factors are replicated.

Split-plot analysis of variance, described by
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Eijk ~ N(O, 0.62) and 5ik s N(O, 0-621)

If aj =~ 0 (plausible for physicochemical factors)
then split-plot anova reduces to factorial anova.

Model-averaging

Split-plot experimental design, but two models:
M,: o42# 0 (split-plot) and M,: ¢,%= 0 (factorial)
Weighted estimates via frequentist

or Bayesian model-averaging.

Project: Develop model-averaging techniques for split-plot designs.

Test statistical properties via Monte Carlo simulation.

Create R package for community use.




