University of Otago



Martin Hazelton

Martin's Stuff
Research

Teaching
STAT115
STAT310

Personal

Martin Hazelton's webpage
Contact me
martin.hazelton AT otago.ac.nz

tel: +64 3 4797605

Department of Mathematics and Statistics
University of Otago
Dunedin
New Zealand



Martin Hazelton's Publications

Refereed Journal Papers

Articles in Statistics Journals

  1. Hazelton, M.L. (1995). Improved Monte Carlo inference for models with additive error. Statistics and Computing, 5, 343-350.
  2. Hazelton, M.L. (1996). Bandwidth selection for local density estimators. Scandinavian Journal of Statistics, 23, 221-232.
  3. Hazelton, M.L. (1996). Optimal rates for local bandwidth selection. Journal of Nonparametric Statistics, 7, 57-66.
  4. Hazelton, M.L. (1998). Bias annihilating bandwidths for kernel density estimation at a point. Statistics and Probability Letters, 38 , 305-309.
  5. Broughton, J., Hazelton, M.L. and Stone, M. (1999). Influence of light-level on the incidence of road casualties and the associated effect of summertime clock changes. Read before the Royal Statistical Society, 14 October 1998, and in Journal of the Royal Statistical Society, Series A, 162, 137-175.
  6. Hazelton, M.L. (2000). Marginal density estimation from incomplete bivariate data. Statistics and Probability Letters, 47, 75-84.
  7. Hazelton, M.L. (2001). Estimation of Origin-Destination Trip Rates in Leicester. Journal of the Royal Statistical Society, Series C (Applied Statistics), 50, 423-433.
  8. Duong, T and Hazelton, M.L. (2003). Plug-in bandwidth selectors for bivariate kernel density estimation. Journal of Nonparametric Statistics, 15, 17-30.
  9. Gurrin, L.C, Moss, T.J., Sloboda, D.M., Hazelton, M.L., Challis, J.R.G, and Newnham, J.P. (2003) Using WinBUGS to fit non-linear mixed models with an application pharmacokinetic modelling of insulin response to glucose challenge in sheep exposed antenatally to glucocorticoids. Journal of Biopharmaceutical Statistics, 13, 117-139.
  10. Hazelton, M.L. (2003). Variable kernel density estimation. Australian and New Zealand Journal of Statistics, 45, 271-284.
  11. Hazelton, M.L. (2003). A graphical tool for assessing normality. The American Statistician, 57, 285-288.
  12. Hazelton, M.L. (2004). Density estimation from aggregate data. Computational Statistics, 19, 407-423.
  13. Hazelton, M.L. (2004). Estimating vehicle speed from traffic count and occupancy data. Journal of Data Science, 2, 231-244.
  14. Duong, T. and Hazelton, M.L. (2005). Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation. Journal of Multivariate Analysis, 93, 417-433.
  15. Duong, T and Hazelton, M.L. (2005). Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics, 32, 485-506.
  16. Gurrin, L.C., Scurrah, K. and Hazelton, M.L. (2005). Tutorial in biostatistics: Spline smoothing with linear mixed models. Statistics in Medicine, 24, 3361-3381.
  17. Baddeley, A., Turner, R., Moller, J. and Hazelton, M. (2005). Residual analysis for spatial point processes (with discussion). Journal of the Royal Statistical Society Series B, 67, 617-666. Read before the Royal Statistical Society on Wednesday 22nd June 2005.
  18. Hazelton, M.L. and Turlach, B.A. (2007). Reweighted kernel density estimation. Computational Statistics and Data Analysis, 51, 3057-3069.
  19. Hazelton, M.L. (2007). Bias reduction in kernel binary regression. Computational Statistics and Data Analysis, 51, 4393-4402.
  20. Hazelton, M.L. and Davies, T.M. (2009). Inference based on kernel estimates of the relative risk function in geographical epidemiology. Biometrical Journal, 51, 98-109.
  21. Hazelton, M.L. and Marshall, J.C. (2009). Linear boundary kernels for bivariate density estimation. Statistics and Probability Letters, 79, 999-1003.
  22. Hazelton, M.L. and Turlach, B.A. (2009). Nonparametric density deconvolution by weighted kernel estimators. Statistics and Computing, 19, 217-228.
  23. Hazelton, M.L. and Turlach, B.A. (2010). Semiparametric density deconvolution. Scandinavian Journal of Statistics 37, 91-108.
  24. Marshall, J.C. and Hazelton, M.L. (2010). Boundary kernels for adaptive density estimators on regions with irregular boundaries. Journal of Multivariate Analysis 101, 949-963.
  25. Davies, T.M. and Hazelton, M.L. (2010). Adaptive kernel estimation of spatial relative risk. Statistics in Medicine, 29, 2423-2437.
  26. Hazelton, M.L. (2010). Statistical inference for transit system origin-destination matrices. Technometrics,  52 (2),  221-230.
  27. Davies, T.M., Hazelton, M.L. and Marshall, J.C. (2011). sparr: Analyzing spatial relative risk using fixed and adaptive kernel density estimation in R. Journal of Statistical Software, 39, 1-14.
  28. Hazelton, M.L. (2011). Assessing log-concavity of multivariate densities. Statistics and Probability Letters, 81, 121-125.
  29. Hazelton, M.L. and Turlach, B.A. (2011). Semiparametric regression with shape constrained  penalized splines. Computational Statistics and Data Analysis, 55, 2871-2879.
  30. Fernando, W.T.P.S, Ganesalingam, S. and Hazelton, M.L. (2014). A comparison of estimators of the geographical relative risk function. Journal of Statistical Computation and Simulation, 84(7), 1471-1485.
  31. Davies, T.M. and Hazelton, M.L. (2013). Assessing minimum contrast parameter estimation for spatial and spatiotemporal log-Gaussian Cox processes. Statistica Neerlandica, 67(4), 355-389.
  32. Hazelton, M.L. (2015). Network tomography for integer-valued traffic. Annals of Applied Statistics, 9 (1), 474-506.
  33. Pirikahu, S., Jones. G., Hazelton, M.L. and Heuer, C. (2016). Bayesian methods of confidence interval construction for the population attributable risk from cross-sectional studies. Statistics in Medicine, 35, 3117–3130.
  34. Davies, T.M., Jones, K. and Hazelton, M.L. (2016). Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function. Computational Statistics and Data Analysis, 101, 12-18.
  35. Hazelton, M.L. and Cox, M.P. (2016). Bandwidth selection for kernel log-density estimation. Computational Statistics and Data Analysis, 103, 56-67.
  36. Hazelton, M.L. (2017). Testing for changes in spatial relative risk. Statistics in Medicine, 36, 2735-2749.
  37. Hazelton, M.L. and Bilton, T.P. (2017). Polytope samplers for network tomography. Australian and New Zealand Journal of Statistics, 59(4), 495-511. Supplementary material here.
  38. Betz-Stablein, B., Hazelton, M.L., Moragan, W.H. (2018). Modelling retinal pulsatile blood flow from video data. Statistical Methods in Medical Research, 27(5), 1575-1584.
  39. Davies, T.M., Marshall, J.C. and Hazelton, M.L. (2018). Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk with accompanying instruction in R. Statistics in Medicine, 37, 1191–1221.
  40. Davies, T.M., Flynn, C. and Hazelton, M.L. (2018). On the utility of asymptotic bandwidth selectors for spatially adaptive kernel density estimation. Statistics and Probability Letters, 138, 75-81.
  41. Hazelton, M. L., Mcveagh, M. R., and Van Brunt, B. (2021). Geometrically aware dynamic Markov bases for statistical linear inverse problems. Biometrika, 108(3), 609-626. doi: 10.1093/biomet/asaa083
  42. Pirikahu, S., Jones G., and Hazelton, M. (2021). Bayesian inference for population attributable measures from under-identified models. Australian and New Zealand Journal of Statistics, 63(4), 639-657. http://doi.org/10.1111/anzs.12352
  43. Hazelton, M.L. and Davies, T.M. (2022). Pointwise comparison of two multivariate density functions. Scandinavian Journal of Statistics, 49, 1791-1810.
  44. Baddeley, A, Davies, T.M., Hazelton, M.L., Rakshit, S., Turner, R. (2022). Fundamental problems in fitting spatial cluster process models. Spatial Statistics, 52, 100709 https://doi.org/10.1016/j.spasta.2022.100709.
  45. MacDonald, B., Davies, T., and Hazelton, M.L. (2023). Feasibility of Monte-Carlo maximum likelihood for fitting spatial log-Gaussian Cox processes. Spatial Statistics, 56, 100759. https://doi.org/10.1016/j.spasta.2023.100759
  46. Hazelton, M.L. (2023). Shrinkage estimates of the spatial relative risk function. Statistics in Medicine, 42, 4556-4569.10.1002/sim.9875.
  47. Hazelton, M., McVeagh, M., Tuffley, C. and van Brunt, B. (2023) Some rapidly mixing hit-and-run samplers for latent counts in linear inverse problems. Bernoulli, 30(4), 2676-2699.
  48. Hazelton, M.L. and Karimi, M. (2024). When lattice bases are Markov bases. Statistics and Probability Letters, 208, 110047. https://doi.org/10.1016/j.spl.2024.110106

Articles in Transportation Science Journals

  1. Hazelton, M.L. (1998). Some remarks on Stochastic User Equilibrium. Transportation Research B, 32, 101-108.
  2. Hazelton, M.L. and Pueschel, J. (1999). Estimation of link performance functions from incomplete flow data. Journal of Advanced Transportation , 33, 323-334.
  3. Hazelton, M.L. (2000). Estimation of origin-destination matrices from link flows on uncongested networks. Transportation Research B, 34, 549-566.
  4. Hazelton, M.L. (2001). Inference for origin-destination matrices: estimation, reconstruction and prediction. Transportation Research B , 35, 667-676.
  5. Hazelton, M.L. (2002). Day-to-day variation in Markovian traffic assignment models. Transportation Research B, 36, 637-648.
  6. Hazelton, M.L. (2003). Some comments on origin-destination matrix estimation. Transportation Research A, 37, 811-822.
  7. Hazelton, M.L. (2003). Total travel cost in stochastic assignment models. Networks and Spatial Economics, 3, 457-466.
  8. Watling, D.P. and Hazelton, M.L. (2003). The dynamics and equilibria of day-to-day assignment models. Networks and Spatial Economics, 3, 349-370.
  9. Hazelton, M.L. and Watling, D.P. (2004). Computation of equilibrium distributions of Markov traffic assignment models. Transportation Science, 38, 331-342.
  10. Hazelton, M.L. (2008). Statistical inference for time varying origin-destination matrices. Transportation Research Part B, 42, 442-452.
  11. Hazelton, M.L. (2010). Bayesian inference for network-based modes with a linear inverse structure. Transportation Research Part B, 44, 674-685.
  12. Parry, K. and Hazelton, M.L. (2012). Estimation of origin-destination matrices from link counts and sporadic routing data. Transportation Research Part B, 46, 175-188.
  13. Parry, K. and Hazelton, M.L. (2013). Bayesian inference for day-to-day dynamic traffic models. Transportation Research Part B, 50, 104-115.
  14. Smith, M., Hazelton, M.L., Lo, H.K., Cantarella, G.E. and Watling, D.P. (2014). The long term behaviour of day-to-day traffic assignment models. Transportmetrica A: Transport Science, 10, 647-660.
  15. Shao, H, Lam W.H., Sumalee, A., Chen, A., Hazelton, M.L. (2014). Estimation of mean and covariance of peak hour origin-destination demands from day-to-day fraffic counts, Transportation Research Part B, 68, 52-75.
  16. Shao, H., Lam, W.H.K, Sumalee, A., Hazelton, M.L. (2015). Estimation of mean and covariance of stochastic multi-class OD demands from classified traffic counts. Transportation Research Part C: Emerging Technologies, 59, 92-110.
  17. Parry, K., Watling, D.P. and Hazelton, M.L. (2016). A new class of doubly stochastic day-to-day dynamic traffic assignment models. EURO Journal on Transportation and Logistics, 5(1) 5-23.
  18. Hazelton, M.L. and Parry, K. (2016). Statistical methods for comparison of day-to-day traffic models. Transportation Research Part B, 92(A), 22-34.
  19. D.P. Watling and M.L. Hazelton (2018). Asymptotic approximations of transient behaviour for day-to-day traffic models. Transportation Research Part B, 118, 90-105.
  20. A. Mahmoodjanloo, M.L. Hazelton and K. Parry (2019). Apples versus oranges? Comparing deterministic and stochastic day-to-day traffic assignment models. Transportmetrica B: Transport Dynamics, 7(1), 1426-1443.
  21. Hazelton, M.L. (2022). The emergence of Stochastic User Equilibria in day-to-day traffic models. Transportation Research Part B, 158, 102-112. https://doi.org/10.1016/j.trb.2022.02.010.
  22. Iryo,T.,  Watling, D., and Hazelton, M. (2024). Estimating Markov chain mixing times: convergence rate towards equilibrium of a stochastic process traffic assignment model. Transportation Science. 58(6):1168-1192. https://doi.org/10.1287/trsc.2024.0523
  23. Hazelton, M.L., and Najim, L. (2024). Using traffic assignment models to assist Bayesian inference for origin-destination matrices. Transportation Research Part B 186, 103019. https://doi.org/10.1016/j.trb.2024.103019

Other Journal Articles

  1. Hazelton, M.L., and Gurrin, L.C. (2003). A note on genetic variance components in mixed models. Genetic Epidemiology, 24, 297-301.
  2. Sircombe, K.N. and Hazelton, M.L. (2004). Comparison of detrital zircon age distributions by kernel functional estimation. Sedimentary Geology, 171, 91-111.
  3. Morgan, W.H., Hazelton, M.L., Azar, S.L., Cringle, S.J., House, P.H., Yu, D.-Y. and Balaratnasingham, C. (2004). Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology, 111, 1489-1494.
  4. Firth, L., Hazelton, M.L. and Campbell, E. (2005). Predicting the onset of winter rains using random forests. Journal of Climate, 18, 772-781.
  5. Morgan, W.H., Balaratnasingam, C., Hazelton, M.L., House, P.H., Cringle, S.J., Yu, D.-Y. (2005). The force required to induce hemivein pulsation is associated with the site of maximal field loss in glaucoma. Investigative Ophthalmology and Visual Science, 46, 1307-1312.
  6. Trinajstic, K. and Hazelton, M. (2007) The taxonomic implications of intraspecific and ontogenetic variation in compagopiscis croucheri (placodermi). Journal of Vertebrate Paleontology, 27, 571-583.
  7. Balaratasingham, C., Morgan, W.H., Hazelton, M., House, P., Barry, C., Chan, H., Cringle, S, and Yu, D.Y. (2007). Retinal vein pulsation characteristics are predictive of glaucoma progression. British Journal of Ophthalmology, 91, 441-444.
  8. Benschop, J., Hazelton, M.L., Stevenson, M.A., Dahl, J., Morris R.S. and French, N. (2008). Descriptive spatial epidemiology of subclinical Salmonella infection in Danish finisher pig herds: application of a novel method of spatially adaptive smoothing. Veterinary Research, 39:02.
  9. Morgan, W.H., Hazelton, M.L., Balaratnasingam, C., Chan, H., House, P.H., Barry, C.J., Cringle, S.J., and Yu, D.-Y. (2009).The association between retinal vein ophthalmodynamometric force change and optic disk excavation. British Journal of Ophthalomology 93,594–596.
  10. Sadler R. J., Hazelton M., Boer M. B. and Grierson, P. (2010). Deriving state-and-transition models of semi-arid grassland dynamics using imagery. Ecological Modelling, 221(3), 433-444.
  11. R.L. Sanson, R.L., Harvey, N., Garner, M.G., Stevenson, M.A., Davies, T.M., Hazelton, M.L., O’Connor, J., Dubé, C., Forde-Folle, K.N. and Owen, K. (2011) Foot-and-mouth disease model verification and 'relative validation' through a formal model comparison. Revue Scientifique et Technique-Office International des Epizooties 30(2), 527-540.
  12. Betz-Stablein, B.D., Morgan, W.H., House, P.H., and Hazelton, M.L. (2013). Disease mapping techniques applied to glaucoma visual field datasets. Investigative Ophthalmology & Visual Science, 52(2), 1544-1553.
  13. Fernando, W.T.P.S., and Hazelton, M.L. (2014). Generalizing the spatial relative risk function. Spatial and Spatio-Temporal Epidemiology 8, 1-10.
  14. Bilton, P.A., da Campo R., Nikzad, R., Hazelton, M. and Derrick, P.J. (2014). Interaction between naphthenic acids: Dependence on molecular structure revealed through statistical analysis of ultra-high resolution electrospray mass spectra. European Journal of Mass Spectrometry, 20(3), 221-232.
  15. Richards, K.K., Hazelton, M.L., Stevenson, M.A., Lockhart, C.Y., Pinto, J. (2014). Methods for detecting anomalies in routinely recorded animal health data, with particular reference to Foot-and-Mouth disease in Viet Nam. Spatial and Spatio-Temporal Epidemiology, 11, 125-133.
  16. Morgan, W.H., Hazelton, M.L., Betz-Stablein, B.D., Yu, D.Y., Lind, C.R.P., Ravichandran, V., and House, P.H. (2014). Photo-plethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay. Investigative Ophthalmology & Visual Science, 55(9), 5998-6006.
  17. Morgan, W.H., Abdul-Rahman, A., Yu, D.-Y.,Hazelton, M.L.Betz-Stablein, B.D., and Lind, C.R.P. (2015). The objective assessment of retinal vessel pulsation, PLoS ONE, 10(2): e0116475. doi:10.1371/journal. pone.0116475.
  18. Guillot, E.G., Hazelton, M.L., Karafet, T.M, Lansing, J.S., Sudoyo, H., and Cox. M.P. (2015). Relaxed observance of traditional marriage rules allows social connectivity without loss of genetic diversity. Molecular Biology and Evolution, 32:2254-2262.
  19. Morgan, W.H., House, P.H., Hazelton, M.L., Betz-Stablein, B.D., Chauhan, B.C., Viswanathan, A., Fatehee, N. and Yu, D.Y. (2016). Intraocular pressure reduction is associated with reduced venous pulsation pressure. PLoS ONE, 11(1): e0147915.
  20. Lam J., Chan, G., Morgan, W., Hazelton, M., Betz-Stablein, B., Cringle, S, and Yu, D.-Y. (2016). Structural characteristics of the optic nerve head influencing human retinal venous pulsations. Experimental Eye Research, 145, 341-346.
  21. Morgan, W., Hazelton, M.,  and Yu, D.-Y. (2016). Retinal venous pulsation: expanding our understanding and use of this enigmatic phenomenon. Progress in Retinal and Eye Research, 55, 82-107.
  22. S.-J. Liao, J.C. Marshall, M.L. Hazelton and N.P. French (2019). Extending statistical models for source attribution of zoonotic diseases: A study of campylobacteriosis. Journal of the Royal Society Interface, 16: 20180534. http://dx.doi.org/10.1098/rsif.2018.0534 .
Letters, Discussions and Short Contributions
  1. Hazelton, M.L. (2004). Reply to "Hazelton, M.L. (2003), A Graphical Tool for Assessing Normality", The American Statistician, 57, 285-288: Comment by Jones". The American Statistician, 58, 176-177.
  2. Morgan W.H., Hazelton M.L., Azar S.L., House P.H., Yu D.Y., Cringle S.J., Balaratnasingam C. (2004). Letter to Editor in reply to Jost B. Jonas regarding the article by: Morgan WH, Hazelton ML, Azar SL, House PH, Yu DY, Cringle SJ, Balaratnasingam C: Retinal venous pulsations in glaucoma and glaucoma suspects, in Ophthalmology, 111, 1489-1494. Ophthalmology, 112, 949.
  3. Hazelton, M.L. (2008). Letter to the Editor: Kernel estimation of risk surfaces without the need for edge correction. Statistics in Medicine, 27, 2269-2272.
  4. Hazelton, M.L. (2010). Discussion of "Maximum likelihood estimation of a multi-dimensional log-concave density" by Cule, Samworth and Stewart. Journal of the Royal Statistical Society Series B 72 (5), 595-596.
  5. Hazelton, M., and Watling, D. (2016). Editorial. EURO Journal on Transportation and Logistics: Special Issue on Day-to-day Dynamic Traffic Assignment Models, 5(1) 1-3.
  6. Morgan, W.H., Khoo, Y.J., Kermode, A.G., Lind, C.R., Hazelton, M.L., Parsons, K.E., and Yu, D.Y. (2021). Utilisation of retinal vein photoplethysmography to measure intracranial pressure. Journal of Neurology, Neurosurgery and Psychiatry 92(1): 104–106.
Refereed Book Chapters and Conference Proceedings
  1. Hazelton, M. L. and Polak, J. W. (1994). Aggregate network performance relations: theory and empirical results. In Proceedings of the 22nd European Transport Forum, Seminar G, 301-313, PTRC, London.
  2. Hazelton, M.L., Lee, S. and Polak, J.W. (1996). Stationary states in stochastic process models of traffic assignment: a Markov Chain Monte Carlo approach. In Proceedings of the 13th International Symposium on Transportation and Traffic Theory, (ed. J.-B. Lesort) 341-357. Pergamon, Oxford.
  3. Lee, S. and Hazelton, M.L. (1996). Stochastic optimization of combined traffic assignment and signal control junction modelling. In Proceedings of the 13th International Symposium on Transportation and Traffic Theory, (ed. J. B. Lesort) 713-735. Pergamon, Oxford.
  4. Hazelton, M.L. and Polak, J.W. (1997). Modelling traveller learning in stochastic traffic assignment. In Proceedings of the IFAC/IFIP/IFORS Symposium on Transportation Systems , (eds. M. Papageorgiou & A. Pouliezos), 2, 646-651.
  5. Polak, J.W. and Hazelton, M.L. (1998). The influence of alternative traveller learning mechanisms on the dynamics of transport systems. In European Transport Conference, Proceedings of Seminar D: Transportation and Planning Methods, 83-95.
Minimally Refereed Conference Papers
  1. Hazelton, M. L. (1994). Network aggregation as a source of error and bias in transport system perfromance. Proceedings of the 1994 Universities' Transport Studies Group Conference, UTSG, U.K.
  2. Lee, S. and Hazelton, M. (1996). A stochastic traffic assignment model for dynamic route guidance. Proceedings of the 3rd World Congress on Intelligent Transport Systems [CDROM].
  3. Hazelton, M. L., Lee, S. and Polak, J. W. (1996). Stationary states in stochastic process models of traffic assignment: a Markov Chain Monte Carlo approach. Proceedings of the 1996 Universities' Transport Studies Group Conference, UTSG, U.K.
  4. Hazelton, M.L. (1996). Monte Carlo inference for a model of carbon fibre strength. In Proceedings of the 11th International Workshop on Statistical Modelling, 192-199 (1996).
  5. Duong, T. and Hazelton, M. (2001). Efficient day-to-day simulation of traffic systems with applications to the effects of pre-trip information. Proceedings of the 8th World Congress on Inteligent Transport Systems. (CDROM from ITS Australia.)
  6. Scurrah, K, Hazelton, M., Palmer, L and Burton, P. (2001). Generalized linear mixed models for familial survival data, with applications to COAG data. In: Klein, B., Korsholm, L. (eds) Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark, pp 355-362.
  7. Hazelton, M., and Gordon, A. (2002). Esitmation of Origin-Destination matrices from link counts. Proceedings of the European Transport Forum. (CDROM from PTRC)
  8. Sadler, R., Hazelton, M., and Grierson, P. (2003). Spatio-temporal dynamics of Pilbara grasslands. Proceedings of the 7th International Rangelands Conference (Durban, RSA, 26 July - 1 August 2003).
  9. Benschop, J., Hazelton, M. L., Stevenson, M. A., Dahl, J., Morris, R. S., French, N. P. (2007). Application of a novel method of spatially adaptive smoothing. Proceedings of GisVet 07, (August 24, Denmark), pp. 1-4.
Others
  1. Hazelton, M.L. (1998). Nonparametric Regression. In the Encyclopedia of Biostatistics, Vol. 4, Ed. P. Armitage and T. Colton. John Wiley & Sons. pp. 3037-3039. [Invited contribution]
  2. Hazelton, M.L. (2000). Book review of 'Local Regression and Likelihood' by Clive Loader. Journal of Applied Statistics, 27 , 519-521.
  3. Hazelton, M.L. (2003). Book review of 'Bayesian Statistical Modelling' by Peter Congdon. Journal of Applied Statistics, 30, 601-602.
  4. Hazelton, M. L. (2005). Nonparametric regression. In the Encyclopedia of Biostatistics (2nd edition), Ed. P. Armitage and T. Colton. John Wiley & Sons.  [Invited contribution]
  5. Hazelton, M. L. (2005). Kernel Smoothing. In the Encyclopedia of Statistics in Behavioral Science, John Wiley & Sons.  [Invited contribution]
  6. Hazelton M L (2010), Univariate Linear Regression. In: Penelope Peterson, Eva Baker, Barry McGaw, (Editors), International Encyclopedia of Education. volume 7, pp. 482-488. Oxford: Elsevier.  [Invited contribution]
  7. Hazelton, M.L. (2011). Method of moments estimation. In International Encyclopedia of Statistical Sciences, Part 13, 816-817, Springer. [Invited contribution]
  8. Hazelton, M.L. (2015). Nonparametric regression. International Encyclopedia of Social and Behavioral Sciences 2nd Edition (ed. James Wright). Volume 16, 867–877. Oxford: Elsevier.  [Invited contribution]
  9. Hazelton, M.L. (2016). Kernel Smoothing. In: A.B. Lawson, S. Banerjee, R. Haining, L. Ugarte (editors), Handbook of Spatial Epidemiology, CRC Press. 195-207. [Invited contribution]
  10. Hazelton, M. L. (2018). Statistical methods in network traffic. In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri and J. L. Teugels). doi:10.1002/9781118445112.stat08056 [Invited contribution]
Submitted for Publication
  1. Macdonald, B., Davies, T.M., Hazelton, M.L. (2024). Bandwidth selection for kernel intensity estimators for spatial point processes. Submitted for publication.
  2. Baddeley, A.J., Davies, T.M., Hazelton, M.L. (2024). An improved estimator of the pair correlation function of a spatial point process. Submitted for publication.
Selected Consulting Reports
  1. Hazelton, M. L. and Gupta, R. (2000) Survival Analysis of Data on Endometrial Carcinoma, for King Edward Memorial Hospital, UWA Statistical Consulting Group report, 2000/4.
  2. Hazelton, M. L. and Gupta, R. (2000) Optimum Sampling Plans for Fraud Detection and Fake Party Membership Registration, for Electoral Commissioner of WA, UWA Statistical Consulting Group report 2000/7.
  3. Murray, K. and Hazelton, M.L. (2001). Calculation of Performance Amounts, for Packer & Co., UWA Statistical Consulting Group report.
  4. Gordon, A, Hazelton, M. and Bari, M. (2002). Derivation of OD Trip Matrices: Phase 1 Report. Consulting report for the Highways Agency U.K. (87 pages).
  5. Vijayan, K., Hazelton, M.L. and Murray, K. (2003). Sampling Scheme for Incoming Consignments of Bananas from the Eastern States, for Western Australian Department of Agriculture, UWA Statistical Consulting Group report.
  6. Murray, K., Khan, N, Hazelton, M.L. (2004). Probability Calculations For Proposed Racing Scratch Cards. UWA Statistical Consulting Group report.
  7. French, N., Leader, D., Hazelton, M., Marshall, J., and Benschop, J. (2011). Development and application of new tools for the analysis of salmonella surveillance data identifying the spatial and temporal determinants of raised notifications in New Zealand. Report for Food Safety Authority, New Zealand.


Page last updated: 28 November 2024.